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Abstract We consider the model checking problem for CSL over
infinite CTMCs. For highly structured infinite CTMCs, this
The design of complex concurrent systems often involvesias been already studied in [22, 21]. We consider arbi-
intricate performance and dependability considerations. trary infinite CTMCs, including rates unbounded CTMCs.
Continuous-time Markov chains (CTMCs) are widely used We focus on the CSL [3] formulas where we do not admit
models for concurrent system designs making it possible tosteady-state operator. The resulting logic can express (po
model check such properties. In this paper, we focus onsibly nested) probabilistic timing properties such‘ésthe
probabilistic timing properties of infinite-state CTMCs-e  probability to reach¥-states alongb-states within time in-
pressible in continuous stochastic logic (CSL). Such prop- terval [6.5,8.5] smaller tha).1” via P 1 (®U6-5851 ).
erties comprise important dependability measures, such asFor CTMCs, these properties constitute the arguably most
timed probabilistic reachability, performability, sumabil- important class of CSL formulae. They can express many
ity, and various availability measures like instantaneous performance measures, including timed probabilisticieac
availabilities, conditional instantaneous availabiég and ability, various availability measures like instantangou
interval availabilities. Conventional model checkers ex- availabilities, conditional instantaneous availal#itiand
plore the given model exhaustively which is not always pos-interval availabilities [3]. We present model checkingalg
sible either due to state explosion or because the model isrithms for such properties over infinite CTMCs. In practice,
infinite. This paper presents a method that only explores theinfiniteness occurs in the form of unbounded behavior, such
infinite (or prohibitively large) model up to a finite depth, as quantities of substances in biological/chemical maoutels
with the depth bound being computed on-the-fly. We provideunbounded queues in queueing systems.
experimental evidence showing that our method is effective  CSL model checking for finite CTMCs amounts to per-
forming analyses of the transient (time-dependent) proba-
bility vector [18, 3], usually carried out via theniformiza-
tion technique [23]. Via uniformization, the transient prob-
ability can be expressed by a weighted infinite sum (of
transient probabilities computed in a finite discrete-time
Markov chain). The weights are given by a jump process
Continuous-time Markov chains (CTMCs) [23], together \yhich is Poisson distributed. This infinite sum is in pragtic
with their extensions with rewards, are popular means to truncatedup to some pre-specified accuracy. For a given
model performance and dependability of computing sys- accuracy, the truncation-point can be computed using the
tems and the behavior of biological systems. In the contextFox-Glynn algorithm [8].
of CTMCs, properties of interest can be specified using con- o infinite CTMCs, a variation of uniformization, called
tinuous stochastic logic (CSL) [1, 3], which is a branching- 4y namicuniformization [10], has been introduced, and fur-
time temporal logic inspired by CTL [7]. In CSL, the until  yher developed intadaptiveuniformization [26]. The basic
operator is equipped with a time interval to capture proba-jge js to truncate not only the computation of the infinite
bilistic timing properties. CSL allows one to quantify the gym put also the matrix that represents the system during
probability of paths that satisfy a certain (e.g. nested-int s construction. This idea has the same flavor as the princi-
path formula. ple of Bounded Model Checking [5] (BMC). For dynamic
*This work is supported by the NWO-DFG bilateral project VOBl L.miformization’ one has tguessg Sa.'tiSfaCt.ory uniformiza-
by the DFG as part of the Transregional Collaborative Rese@enter 10N parameter beforehand. As indicated in [25], a too small
SFB/TR 14 AVACS parameter means that the transition matrix is not a stochas-
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tic matrix, while a larger-than-necessary value makes theOutline of the paper. After recalling the established
algorithm inefficient. Adaptive uniformization alleviate  model checking algorithm for CSL over CTMCs in Sec-
this, which carries out the uniformization-on-the-fly with  tion 2, we present the proposed extension to infinite CTMCs
out a priori knowledge of the uniformization rate. In gen- and infinite MRMs in Section 3. In Section 4, we report ex-
eral, the truncation-point is smaller than the one obtained perimental results. Section 5 concludes. Proofs are given i
via dynamic uniformization. But the price to pay is that the the Appendix.

jump process is no longer Poisson and hence complicates

the computation. 2 Preliminaries
In this paper, we lift the principal idea of truncated con-

struction to the CSL model checking context, based on the
work of Grassmann. We present an effective method to
compute the optimal dynamic uniformization parameter, if
it exists, in an on-the-fly manner. This enables a truncated
construction of an otherwise infinite (or very large) CTMC,
and the computation of transient probability up to the pre-
specified accuracy, which is the basis for our CSL model-
checking routine. We also consider Markov reward mod- ) .
els (MRMs) which extend CTMCs with state or transiton T / : X x ¥ — R>o is a function over two countable
rewards, allowing to express cost- or bonus-related proper 40mMains, we letf(z, 4) = 3 ¢, f(z,y) forallz € X
ties [2, 19]. We show that our method can be generalized@nd finite subsetl C Y. Let AP denote a set of atomic
to model check timed reward properties against infinite- Propositions.

state MRMSs. A typical reward property sirvivability [6],
which refers to the ability of a system to recover from dis-
astrous circumstances.

The crucial characteristic of our method is that it applies
to arbitrarily structured (finite or infinite) CTMC models
(unlike [22, 21]) and that it avoids exploring that portion
of the state space that is not needed for deciding the for- |, this paper, we consider only finitely branching tran-
mula, just like in BMC. The difference to standard BMC is  jtions: {s' | R(s,s') > 0}| < oo forall s € S. We
that the truncation point is determined from model parame- say that the rate matrix isate boundedf the supremum
ters as they are explored, not from the evaluation of Proper-qup, < R(s,S) is finite, otherwise, it is called rate un-
ties. The truncation point is however dependent on the timeygnded. A states is calledabsorbingif R(s,S) = 0.
bounds appearing in the formula, and might get excessiveThg |apelling functiorl. assigns each statea set of atomic
for very Iarge_t|me bounds. propositiong.(s) C AP which are valid ins. If R(s, s") >

We have implemented a prototype that computes the(, we say that there is a transition fromo s’, denoted by
truncation point on-the-fly. We have assessed the effective s — s/, Fors € S, let Succ(s) = {s' | s — s’} denote
ness of truncation on a number of infinite-state CTMCs, the set of states directly reachable fremFor A C S, let
including a protein synthesis model, a Jackson queueingSucc(A) = Uye 4 Suce(s).
network, and a job processing system. Further, we have The transition probabilities are exponentially distrioit
also considered finite-state CTMCs with very large state over time. Ifs — s’ is the only transition starting from,
spaces* 10° states). In the infinite-state case, truncation the probability that the transition — s’ can be triggered
proves to be a practical approach to verify models that arewithin time ¢ is 1 — e~R(s:s)t_ Furthermore, ifs — s’
not directly amenable to finite-state methods, in the finite- for more than one state’, there is a race condition be-

state case, significant speedups can be achieved over mod@leen the transitions starting fros In this case the prob-
checking without truncation. ability that an arbitrary transition can be triggered withi
Contributions. We introduce time-bounded model check- time ¢ is given byl — e~R(=5t The probability of tak-
ing techniques for infinite CTMCs and infinite MRMs. By ing a particular transitios — s’ from s within time ¢ is
a set of case studies — including a protein synthesis model,%wg)) (1 _ e—R(s7S)t), and in this case we say that— s’

a Jackson queueing network, and a job processing system wins the race

we provide experimental evidence showing that our method Y ” v rate unbounded CTMGS whicha
is effective. '.:urther’ we prg .Sent a C.ase study shqvvjng thatexplonde I[Szfl)a gg]r-wsocuc;nhsl; §L22k¥n§ Z%]Tl?/lucn d?)es not eip\)l;/u:;iéso "
our method is also beneficial for finite but prohibitively nat in finite time with probability one only a finite numbersisites can be
large CTMCs. reached.

We recall the definitions of continuous-time Markov
chains (CTMCs), continuous stochastic logic (CSL), and
the model checking algorithm for CSL over CTMCs. For
more detail, we refer to [3].

2.1 Continuous-time Markov chains

Definition 2.1 A labelled continuous-time Markov chain
(CTMC) is atupleC = (S,Z, R, L) whereS is a countable
set of states] C S is a set of initial statesR : (S x 5) —
R is aratematrix, andL : S — 247 is a labelling func-




Paths and probabilistic measure. An (infinite) path is
an infinite sequence = st soto . . . satisfyings; — s;41,
andt; € Ry for all ¢ 1,2,.... For the paths and
i € N, leto[i] = s; denote thei + 1)-th statej(o,i) = ¢;
denote the time spent i5y. Fort € R, let o@t denote

o[i] such that is the smallest index with < E o tj. For
C, let PathS, denote the set of all paths, atRhthC € (s)
denote the set of all paths starting fremFor states € S, a
probability measure, denoted B¢, on the sePathC_(s)
can be defined. We omit the subscripif it is clear from
context.

A finite path is a finite sequence = sitysats ... s
for £ > 0 satisfyings; — s;+1 andt; € Ryg fori =
1,2,...k — 1. Letlen(o) = k — 1 denote the length of the
path,first(c) = s; denote the first state, ardst (o) = si
denote the last state of the path. Ligith,; denote the set
of all finite paths.

2.2 The logic CSL

The logic we consider is CSL [3] without steady-state
operators. Lef = [a, b] be an interval withu, b € R>( and
a < b. The syntax of CSL is given by:

P=al-0|2AP|Pgp(e)
p=Xo U D

wherep € [0,1] and<e {<,<,>,>}. Leto € Pathe,
the semantics of the path formula is defined as follows:

o= Xiff o[l] = ®A(0,0) €T
o= oUT Viff 3t € [.(cQt = T AV €[0,t).0at = ®)

The semantics of the state formulag~®, &, A &5 is
defined in the same way as for CTk:E= «a iff a € L(s),
s @iff s £ O, s E & A Dy iff s = &, and
s = ®,. A states satisfies the formul®«,(¢) if the prob-
ability of set of paths satisfying meets the boundl p.
More preciselys = P«,(¢) iff Prs(¢) < pwherePrg(¢)
denotes the probability’r;{c € Pathe(s) | 0 | ¢}.
The modelC satisfies a formula if all initial states do:
C = Pap(9) iff Pry,(¢) < pforall sy € 7.

Dependability measures. We give several important de-

pendability measures [3] that can be expressed in CSL. 7(s,t)

First, we introduce two shorthand notations: #sentu-
ally operator' @ := true U’ ®, and thealways operator
O0/® := -~O'-~P. Let B be a set of goal states andp

which characterizes all states in which the system is opera-
tional. The instantaneous availability at tirhes expressed

by P, (OHUup). The interval availability can be expressed
by P, (O lup) whered < ¢ < ¢'. Let the state formula

® denote some condition, then the conditional instanta-
neous availability at timeis expressed b, (dUH1 up).

2.3 Model checking CSL on finite CTMCs

For a CTMCC and a CSL state formulé&, we recall
how to check whethe€ = ®. Throughout this subsec-
tion we assume that the set of statess finite. The ba-
sic model checking strategy is as for CTL [7]. For every
state sub-formular of ®, we recursively compute the set
Sat(V) satisfying the state formuli. As for CTL, atomic
propositions and Boolean connectives can be handled di-
rectly: Sat(a) = {s | a € L(s)}, Sat(—-®) = S\ Sat(P)
andSat(® A V) = Sat(P) N Sat(¥). The probabilistic op-
erator® = P4, (¢) is more involved. The case= X' ¥ is
the same as in [3] and is omitted here. The most interesting
case is the formul®<,(®; U’ ®,) which is reducible to
transient analysis.

Transient analysis and uniformization. For a CTMC
C = (5,7,R, L), auniformization rateg € R>( is any
value satisfyingy > max.cs R(s,S). If we observe the
state distribution of at time points given by a Poisson pro-
cess with rate parameter we obtain a sequence of state
observations, and these observations can be considered as a
discrete-time Markov chain (DTMC). This (so-called) uni-
formized DTMC uni(C) = (S,Z,P, L) can be obtained
from C as follows: P(s, s’), which describes the one-step
probability to move froms to s/, equals%’sl) if s #£ 5
and1 — Ls’i\{s}) otherwise. We observe that, for an ab-
sorbing state, P(s, s') equalsl if s = s, and0 otherwise.
Given C, we will directly useP to refer to the transition
matrix in its uniformized DTMCuni(C).

Starting at state, the transient probability vector at time
t, denoted by (s, t), is the probability distribution over
states at time. If ¢ = 0, we have7(s,0)(s") = 1 if
s = s’ and0 otherwise. We recall thaniformizational-
gorithm [23] for the computation of transient probabilitie
Lett > 0, then:

sOZe‘qt Z@th

(1)

wherep(i, qt) = e~ qt) denotes theé-th Poisson proba-

denote the atomic proposition characterizing that the sys-bility with parameterqt In this formula, the vector (s, i)

tem is in aB-state. ThenP4,(0!atp) expresses that the
probability of reaching &B-states within interval meets
the bound< p. Assume thatyp is an atomic proposition

is the transient probability aini(C) at stepi, i.e.,7(s, i) =
7(s,0)Pt. Intuitively, any number of transitions might hap-
pen inC within time ¢, but the probability to see precisely



transitions within that time is governed by a Poisson prob-

ability with parameteryt. Hence, the transient probabil-

ity of C equals the infinite sum of the transient probability
of uni(C) at stepi weighted by the corresponding Poisson
probability.

Time-bounded until. LetC = (S,Z,R, L) be a CTMC,
and letP<,(® 4! ¥) be a CSL formula. To check the for-
mula P, (® U’ ¥) it is sufficient to compute the proba-
bility Pr(® 4! ¥). To see how it works, we consider
first the simple caséd = [0,t]. We letC[¥] denote the
CTMC obtained by makin@’'-states absorbing. More pre-
cisely,C[¥] = (S,Z, R, L) whereRC[Y](s, s') equals
R(s, s') if s £ U, equald) otherwise. As explained in [3],
the transformation t@[¥] does not change the probability
Pr,(®U’ ), as oncel-states are reached it does not mat-
ter what happens afterwards. Also thé A —W-states are

made absorbing, as once such a state is reached, the pa

cannot satisfyp /! ¥. The computation of the probability
Pr<(® U’ ) can then be reduced to transient probability
analysis in the CTM@[—~® V ¥]. Note thatC[-® V ¥] is
equivalent taC[¥][—® A —T].

The following theorem recalls how in generait (& 14’
¥) can be computed via transient analysis.

Theorem 2.2 ([18]) For anyC, PrS(® U ) equals
1Y, g APV (s, 1)(s) i 1 = [0,1),
2. Y g RN (s, 1) (s) i T = [t, 1],

3. Zs’\:@ Zs” =v ﬁc{ﬁq)] (Sa t)(sl) :

t)(s") otherwise, i.e., iff = [¢,¢'] with0 < ¢ <.

7—1:6[—\<I>\/\Il] (Sl’ -

first k(qt)-terms of Equation 1 need to be considered for
computing transient probabilities. We now consider those
states that can not be reached within at nidst) transi-
tions from any initial state. For such a statewe have
7(s0,4)(s) = 0forall so € Zandi =0,1,...,k(qt). Be-
cause of the Poisson probability, the probability of reaghi
s with more thank(qt) is neglected. This suggests that for
computing the transient probabilities up to accuraaye
can truncate the model at depifyt). We will follow this
intuition and discuss how to compute the truncation point
for arbitrary CSL formulas.

LetC = (S,Z,R, L) be a CTMC. First, we introduce the
notion ofdepthwhich corresponds to the minimal distance
between two states.

Definition 3.1 For a given CTMQC, thedepthfunctiond :
S x S — Nis defined byi(s,s’) = min{len(o) | o €

[ﬁathf A first(o) = s A last(o) = s'}.

We also writed,(s’) to denoted(s,s’). Intuitively,
ds(s’) corresponds to the minimal length of any finite
path starting froms and ending ins’. We letd;(s) =
ming, ez{ds,(s)} denote the minimal depth starting from
any initial state tos. Fork € N, we define the:-truncated
CTMC as follows:

Definition 3.2 For CTMCC andk € N, we define thé:-
truncated CTMC of’ by: C|, = (S|, Z, Ry, Li) where
Sl = {s € S| dz(s) < k} andRy, L, are restricted to
the truncated state spacty.

Recall that we only consider CTMCs which are finitely
branching. Not surprisingly, the-truncated CTMCC|, is
always finite.

Now we define the truncation point function, which as-

By Equation 1, the transient probability is expressed by signs a natural numbér(Z, ®) to a set of initial state§
an infinite sum of the product of Poisson probability and the 5,4 5 CSL state formula. such that theé:(Z, ®)-truncated

transient probability in the uniformized DTMC. Using the
Fox-Glynn algorithm [8], the Poisson probabilities:, gt)
can be computed. For any given accuracywe want to
computer(s,t) up toe. As explained in [9, 23], the num-
ber of terms to be taken out of Equation 1 is the minimal

numberk (qt) satisfying: Y4 e*qt% >1—e. We fix
now an arbitrary accuracy, for example= 1075 If the
productgt is large k(qt) is in the order of2(qt) [8, 3]. The
complexity [3] of the above method @(M - k(qt’)) where

M denotes the number of transitions ahe-= sup 1.

3 Model checking based on truncations

In this section, we discuss how to model check CSL for-
mulae against infinite CTMCs. To this end, our goal is to
operate on a finite truncation instead of the original indinit
CTMC. From the previous section, we know that only the

model is sufficient to check the formulg up to accuracy
if @ is of the formP4,(¢). That is,k(Z, ®) is a truncation

point such thatPrs @@ (¢) equalsPr< (¢) up toe for all

s € Z. Note that we overload for both truncation point
of the Poisson probabilities, and truncation point for CSL
formulae.

In Section 3.1 we discussed how to compute the transient
probability at timet for infinite CTMCs. Based on that, we
discuss in 3.2 how to compute the truncation point. In 3.3,
the extension to Markov reward models will be discussed.

3.1 Dynamic uniformization for transient
analysis

LetC = (S,Z,R, L) be a infinite CTMC. We want to
compute the transient probability at timeip to accuracy
e, starting at some initial state € Z. Since the model is



infinite, we must truncate the model, otherwise it is impos-
sible. Thus, we want to find a truncation potntsuch that
the transient probability can be computed in the finite trun-
cationC|.. This truncation pointr depends on the set of
initial stateszZ, and on the time bound thus, we letr(Z, t)
denote this number.

Grassmann [10] introduced the notion ayfnamicuni-
formization for the transient analysis of CTMCs where one
has toguessa satisfactory rate of the dynamic uniformiza-

o & =a:wesetk(Z,®) =0,

e & = —U: the truncation poink(Z, ®) is the same as
k(Z,V),

e & = &; A Py we take the maximunk(Z, @) =
max{k(Z,®1), k(Z, P2)} to guarantee the correctness
of the result,

Consider the probabilistic operat®r= P, (¢). First,

tion beforehand. A too small uniformization rate means that consider the next state path formyla= X’ ¥. It is suf-

the transition matrix is not stochastic, while a too high-uni
formization rate makes the algorithm inefficient [25]. We

are striving for an effective method to compute the adequate/g(z, ®) = 1+ k(Succ(Z), D).

dynamic uniformization rate. Our concrete goal in this sub-
section is to determine the minimal rate for stasitomati-
cally, if it exists. The truncation point(Z, t) should satisfy
the following conditions:

1. for all & € S, dz(s)
E(R(s,S)-t) <tr(Z,t),

2. there exitss € S with dz(s) < k(qt) such thaty =
R(s,95).

Such ag can be determined on-the-fly, i.e. during the
exploration of the state space starting from the initiclesta
The idea is as follows. Lefy, = max{R(s,S) | s € Z}.
Initially we let k(qot) serve as candidate truncation point
derived by only looking at the set of initial statestbfNow

< k(qt) implies that

ficient to figure out the set of states satisfyifgwhich
can be reached fror directly. This suggests to take
Notably, k(Succ(Z), ¥)
can be computed recursively éhwith another set of initial
statesSucc(Z).

The most difficult part is the until path formulad =
Pap(®1 U ®y) wherel = [t,¢'] with ¢t < /. The shape
of the intervall forces us to distinguish three cases, two of
which can be grouped together:

The cases! = [0,¢]. Recall that to check whether
C E o, it is sufficient to calculate the probability
Pro, (9, U101 &,) for all s € Z. By Theorem 2.2 it equals
D, TPV ®(50,)(s). We thus need to compute
transient probability at time, starting from state, € 7.
For this, all states with depth smaller thaZ, t) must be
considered. Moreover, the transient probabilities are-com

we explore the state space corresponding to the truncateduted in the model[-®; v ®,] which indicates that we

CTMC Cl(q,+) @and check whether candidatehappens to
be the uniformization rate @f|;,,+) indeed. If yes, we are
finished. If not, we have foungy = max{R(s,S) | s €
S|k(got) }» @and check whethek(qgot) = k(qit), in which
case we are finished as well. Otherwisgot) < k(q:t)
and we thus take the latter as our second candidate, and co

tinue the state space exploration to determine the trudcate

CTMCClyq,+)- For rate bounded models, iterating this way
must terminate at some point — because after every iteratio
k(g;t) is strictly greater than the previous truncation point
k(g;—1t) and is bounded b¥(max.cs R(s, S) - t), hence

the iteration must terminate. However, this need not be true

r}‘ormulaecIn and®, which is

must know whether the states in the truncation satisfy the
sub-state formula®@; and®. For this, we define:

k(Z,®) =tr(Z,t) + max{k(Z', ®1),k(Z’,®2)} (2)

r%/yhereI’ = {s € S| dz(s) < tr(Z,t)} is the set

of already explored states @;,.(z,,). Consider the trun-
cation C|,(z,%)- The sum of Equation 2 enables us to
check whether stateswith dz(s) < tr(Z,t) satisfies sub-
needed for Theorem 2.2.

The casel = [t,t] can be analyzed in a very similar
way asI = [0,¢], with also the same truncation point as
Equation 2.

anymore for rate unbounded models, where the right trun-
cation point could keep increasing because new explored
states have ever higher exit rates. In any case, this syrateg The casel = [t,t'] with 0 < ¢t < t'. Fors € Z, we shall
gives us a partial algorithm to determine the optimal dy- compute the probabilityr,(®; &:*1 &,) using the third
namic uniformization rate on-the-fly, and terminates iftsuc  €quation of Theorem 2.2. For the first transient probability
exists. We refer to the case studlotein Synthesifor fur-  77®1)(s,)(s) in C[~®4], thetr(Z, t)-truncated CTMC is
ther discussions. required. AgairZ’ denote the set of states in the truncation
Clir(z,)- Forevery state’ = &, with dz(s") < tr(Z,t),

the other transient probability®[~®1V®:2l(s/ ¢/ — t)(s")
needs to be computed. This indicates, starting ftbm
as the set of initial states, all states with depth smaller or
equal thartr(Z’, (' — t)) need to be explored. L&t" de-
note the set of states in the truncatiép- wherek*

3.2 Truncation Point for CSL formulae

LetC = (S,Z,R, L) be a CTMC, and le® be a CSL
state formula. We compute the truncation pdifif, ®) for
CSL formula® recursively as follows.



tr(Z,t) + tr(Z,t' — t). Moreover, as in the cade= [0, ¢],
to know whether the sub-formulae and®, are satisfied,
we need explore additionaliyiax{tr(Z"”, ®,),tr(Z", ®3)}
starting fromZ”. Altogether, we have that

k(Z,®) = k* + max{tr(Z", ®1),tr(Z", ®3)}

For probabilistic operator the probability can be computed
in the truncation with the given accuracy:
Lemma 3.3 For any CTMCC and formula® = P<,(¢),
Prél@® (4) equalsPré (¢) up toe, for all s € 7.

The complexity of checking is O(k(Z, @) - M |;(z,))-
This complexity could, however, be exponentiakif¥, ).

Hence, for large time bound or large uniformization rate,
we still might have the state-explosion problem.

3.3 Handling rewards

In CTMCs, states and/or transitions can be equipped

with rewards (or costs), yielding so-called continuounsei
Markov reward models (MRMs). Baiezt. al.[2] intro-
duced a logic CSRL, an extension of CSL, for CTMCs with
state rewards. This extends the until path oper&tdf, ¥
with an additional intervall which represents a bound for
the accumulated rewards. Besides performability [20] and
other important dependability measures, Cleth al. [6]
showed that survivability propertiegan be expressed in
CSRL.

Effective CSRL model checking

is restricted to

to infinite state models, the other is a variation of the PRISM
model checker [14], for very large finite models. All ex-

periments were run on a Linux machine with an AMD

Athlon(tm) XP 2600+ processor at 2 GHz equipped with
2GB of RAM.

4.1 Infinite-State Models

We have implemented a model checker for infinite
Markov (reward) models. The models are specified by prob-
abilistic programs in a guarded command language with un-
bounded integers and unbounded reals. This language is
used in PRISM [14] for finite models and was later extended
[27, 13] to infinite models. In the first analysis phase, the
model is explored as needed up to the truncation point, ac-
cording to the on-the-fly strategy to determine the dynamic
uniformization rate as described in Subsection 3.1. The re-
sulting uniformization rate and the rate matrix are then sub
mitted to the MRMC model checker [16].

Random Walk. We consider a discrete-space,
continuous-time random walk model, depicted in the
figure below. A walker starts from the initial position
0. With a rate of), the walker changes position. With
a probability ofp the field left to the current position is
chosen and with a probability af— p the one to the right.

) 8

P 1—p

0

-3 -2 -1 1 2 3

cases where either time is unbounded, but rewards are

bounded [2], or intervals of the forth = [0,¢] andJ =
[0,7] occur. In the first case, the duality of time and re-

ward can be used to apply our results directly on a model

where time and rewards are swapped [4] and hence tim
is bounded. In the second case, the time bounthkes
the property obviously bounded, implying that only a finite

truncation needs to be considered for model checking. As
a consequence, our techniques developed for model check-

ing properties expressed in CSL can be extended to handl
the relevant fragment of CSRL in a rather straightforward
way, provided we are dealing with reward-bounded models,
i.e. models where the supremum of state and transition re

wards considered are finite. This also holds for other reward
properties [2] such as instantaneous rewards and cunmailativ

rewards.

4 Experimental Results

e

€

We have considered two properties: (1) a cumulative re-
ward property: the expected distance from the startingtpoin
at a given point in time, and (2) a probabilistic reachabil-
ity property: the probability that the walker moves more
thann fields to the right within a certain time boundex-
pressed byP_,(0<'n < 10). The corresponding results
for p = 0.25, and\ = 1 are given in Table 1, where the
analysis time given is only for analyzing the first property
after state-space exploration. The time for the second-prop
erty was no larger thahO milliseconds. As apparent from
the data, the size of the model is proportional to the depth

and the time bound

Jackson Queueing Networks [15]. A Jackson Queueing
Network (JQN) is a system consisting of a number. d-
terconnected queueing stations. Jobs arrive from the envi-
ronment with a negative exponential inter-arrival time and
are distributed to statiohwith probabilityr, ;. Each sta-

This section presents experimental results with two dif- tjo is connected to a single server which handles the jobs
ferent implementations of this approach. One is dedicated,yith a service time given by a negative exponential distri-

2Survivability refers to the ability of a system to recovearfr disastrous
circumstances.

bution with rateu;. Jobs processed by the station of queue
i leave the system with probability o but are put back into



Table 1. Random walk

t constr. time (ms)| mem. (MB) | depth | # states| # transitions| analysis time (ms) exp. dis.| Probability
10 26.7 1.16 153 307 610 14.6 55 0.0022
20 29.0 1.16 163 327 650 16.0 10.5 0.0266
30 30.4 1.27 173 347 690 18.1 15.5 0.0688
100 42.8 1.29 243 487 970 34.0 50 0.3173

Table 2. Jackson Queueing Networks with two queues
t | constr. time (ms)] mem. (MB) | depth | # states| # transitions| analysis time (ms) Probability
10 4661.8 11.32 243 6887 40158 154 0.0224554
20 14937.1 15.88 343 9887 57758 314 0.2691432
30 37237.1 20.36 443 | 12887 75358 514 0.5351491
40 67305.7 24.95 543 | 15887 92958 766 0.7106415
50 111637.6 30.23 660 | 19397 113550 1124 0.8192941
60 161903.4 35.49 775 | 22847 133790 1535 0.8867635

queue;j with probabilityr; ;. It is possible for a job to be
put back into the same queue again, i.g. > 0 is allowed.
A JQN with two queues is depicted in the figure below:

states in this case study is approximately linear to thetdept
and the time bound, while in principle it is quadratic for
two queues and cubic for three queues, respectively. The
linearity is owed to the fact that our model checker does not
further explore goal states.

Quasi-Birth-Death Processes. In [17], a case study is
considered that describes a system consisting of a fixed
number ofm processors and an infinite queue for storing
job requests. The processing speed of a processor is de-
JQNs have an infinite state space because the queues ageribed by the rate, while A describes the incoming rate
unbounded. In this paper, we consider two JQN models.of new jobs. If a new job arrives while at least one proces-
The first one is a JQN with two queues where we fix the sor is idle, the job will be processed directly. Otherwise, i
values of the modelta = 5, uy = 2, uo = 3 and will be put into a waiting queue. If there are idle proces-
sors and the waiting queue is nonempty, a job will be taken

0.0 0.4 0.6 from the queue and processed immediately. To model this
R=108 0.0 0.2 spontaneous transition, a rates> \ is used.
0.7 03 0.0

A t1

which is the matrix of the; ;. We compute the probability
that, withint¢ time units, a state is reached in whith or
more jobs are in the first an2) or more of them are in P
the second queue. Results are given in Table 2. The other

model is a JQN with three queues with parametars: 5,

(idle) (busy)

H1 = 3, o = 1, K3 = 1 and (queue)
Pps
0.0 0.5 0.25 0.25
R 06 04 00 0.0
~ 106 04 00 0.0 The stochastic Petri net (SPN) used in [17] is depicted
0.7 0.3 0.0 0.0 in the figure above for the case = 3. Tokens inp; repre-

sent the number of idle processors, whepgadescribes the
number of busy processors apglgives the number of jobs
state in which two or more jobs are in queueand also in the queue. Transitioh models the case of an incoming
there is at least one job in queR®r queue3. Results are  job given that at least one processors is idle, wheteds-
givenin Table 3. As we can observe, the number of exploredscribes the case in which all processors are busy, thus the

We compute the probability, within timg of reaching a



Table 3. Jackson Queueing Networks with three queues

t | constr. time (ms)] mem. (MB) | depth | # states| # transitions| analysis time (ms) Probability
1 325541.5 53.99 153 | 23870 244641 561 0.4933299
2 428169.5 61.04 163 | 27060 277746 680 0.8288087
3 550725.1 68.65 173 | 30450 312951 9520 0.9454921
Table 4. Quasi-Birth-Death Process
A | constr. time (ms)] mem. (MB) | depth | # states| # transitions| analysis time (ms)| Probability
1 1448.0 9.05 1270 | 5079 12681 280 0.9993348
2 1464.3 9.24 1281 | 5123 12791 215 0.9483252
3 1496.5 9.24 1292 | 5167 12901 242 0.6983419
4 1483.9 9.37 1303 | 5211 13011 212 0.3965853
5 1512.9 9.37 1314 | 5255 13121 226 0.2147077
6 1530.4 9.49 1325 | 5299 13231 218 0.1249413
job is put into the queue. Transitign represents the suc- In the model, the place; corresponds to an inactive

cessful termination of a job. Finally; is the spontaneous gene encoding the proteipm, corresponds to an active gene,
transition in case there are idle processors and the queue iandp;z gives the numbers of existing proteins. The transi-
non-empty. tion t; deactivates the gene with ragtewhile ¢, activates it

We consider the probability that, given that all processors With rate A. If the gene is activeis can produce new pro-
are busy and there are no jobs in the gueue, withime teins with ratev. Each individual protein degenerates with
units a state will be reached in which all processors are idlefated, which is modeled by the transitian.
and the queue is empty. We can compute the probability by ~We consider the property that within timéut later than
settingp; = 0,p2 = 3, p3 = 0 as an initial state and check- 10 time units a state is reached, in whizthor more proteins
ing the formulaP—-(0<*p; = 3 Aps = 0). Results for  €Xist and the gene is inactive. This property can expressed

different) are givenin Table 4 for = 100, m = 3,¢ = 10. by: P—; (O ps > 20 A inactive) whereinactive is an

The uniformization rate of the underlying CTMCIi60 -+ \. atomic proposition representing inactive genes.

As we can observe from the table, the depth is linear to the The results fox = 1,4 = 5,v = 1,6 = 0.02 are pre-
uniformization rate. sented in Table 5. In this case study, the sum of the outgoing

rates of a state mainly depends gn- §. Thus the model

is rate unbounded. On newly explored states whgrés
Protein Synthesis [11]. We analyze an SPN model of higher, the uniformization rate could also be increased. Fo
protein synthesis, as depicted in the figure below. In bio- t < 45, we are still able to determine the minimal dynamic
logical cells, each protein is encoded by a certain gene. IfUniformizationrate on-the-fly. However, for time bounds of
the gene is active, the corresponding protein will be syn- apout50 and beyond, the algont.hm does not terminate. In
thesized. Also, proteins may degenerate and thus disappedf!is casek(Z, qt) grows faster with the depths and the dy-
after a time. Activation and deactivation of genes, protein Na@mic truncation determination never terminates. We note
synthesis (in case of active gene) as well as protein degenthat for this kind of rate unbounded model the adaptive uni-
eration are modeled by stochastic rates. formization method [25] could be used which remains our

future work.

b 4.2 Finite-State Models

We assess our method on models with very large finite

s \ state spaces. To this end, we employ PRISM [14], a finite-
t t state model checker incorporating symbolic data strusture
v P3 ps -0 and algorithms based dvulti-Terminal Binary Decision
» It4 Diagrams (MTBDDs). We compare PRISM in original
t mode with a modified version of PRISM (denoted by ‘trun-

cated’ in tables) that employs our truncation method, i.e.



Table 5. Protein Synthesis

t | constr. time (ms)] mem. (MB) | depth | # states| # transitions| analysis time (ms) Probability
30 355.0 4.02 930 952 2825 10 0.005E-4
35 626.3 6.03 1546 | 1568 4673 72 0.016E-4
40 1366.6 10.76 3018 | 3040 9089 259 0.045E-4
45 10484.7 30.96 9243 | 9265 27764 4208 0.106E-4

it performs transient analysis and reward computation only
up to the truncation point. To avoid major changes within

Table 6. Model construction statistics.

PRISM, truncation-based PRISM still constructs the rate N

. : > _ states| transitions| iter. | time (s)
matrix of theentiremodel beyond the truncation point. PRISM
64 151,060 733,216 133 0.27
Workstation cluster. We consider thelependability of a 128 597,012 2,908,192| 261 0.78
fault-tolerant workstation clustef12]. In the cluster of gig 5‘222’2% iévggg‘ggg 1(5)22 égé
workstations case study, there are two sub-clusters. Each S Sy '
sub-cluster consists of \)//vorkstations connected via a cen- 1024 ) 37,806,100 184,746,016 2053 )~ 49.19
. . . 2048 | 151,109,652 738,590,762 4101 | 193.36
tral switch. The two switches are connected via a back_bone. 4096 | 604.209.172| 2,953,576.480 8194 | 814.42
Each component of the system can break down, and is then truncated
being repaired by a single repair unit responsible for the en 64 151,060 733.216] 133 029
tire system. We consider the following two informal quality 128 573,743 2,793,153 223 2.73
of service (QoS) constraints: 256 892,021 4,334,849 224 5.27
512 900,053 4,373,999| 225 7.96
e Minimum QO0S requires at leagt (k < N) worksta- 1024 916,225 4,452,827| 227 17.08
tions to be operational whefe= |2V ]. 2048 949,001 4,612,595| 231 | 50.26
4096 1,016,281 4,940,579 239 | 215.88

e Premium QOS requires at leag¥ workstations to be
operational.

. . While the number of states and transitions for PRISM
In both cases, workstations have to be connected via,

. ) X increases dramatically with paramef€ér growth is slower
swﬂches_. I n each sub-cluster the number c_>f operational;, the truncated version. The reason is apparent from the
workstauons IS sr_naller thah (andN respecuve_ly), the column displaying the iterations of the truncated version:
ba_ckbone IS required to be operational to provide the " much fewer iterations are done compared to PRISM. As
quired service.

oY . N increases, the truncation point grows only slowly, and
Let Minimum and Premium be two state formulae cor-

. . . ) hence, only a small fraction of the state space needs to be
responding the informal QoS constraints described above.

. . . explored in the truncated construction.
We consider the following two bounded properties: . . . .
As explained earlier, our prototype implementation con-

structs the rate matrix beyond the truncation point. This is
alleviated by the fact that the full untruncated rate matrix
is stored symbolically in the form of a multi-terminal BDD
and never unfolded explicitly, e.g. as a sparse matrix. As a
result, although truncation makes the model size (Table 6)
and analysis time (Table 7) grow only marginallyih this

is not the case for overall analysis time, which includes con
struction of the matrix.

In Table 7, we present experimental results of model
checking the propertied and B. We have computed the
results in both algorithms up to precisien= 10~% and in-
deed, the corresponding results are the same, apsing
PRISM, the memory and the time used for model checking
increase approximately in the same way as the size of the
model. ForN > 2048, PRISM cannot model check these

A) P—_7(0N=Minimum): the probability that the QoS
drops below minimum quality within one time unit.

B) the expected number of repditsy time point one.

In Table 6, we give statistics of the model construction
using PRISM 3.1 [14] in original mode, i.e. without trunca-
tion, and then our version, i.e. with truncation, respedyiv
Note that as the parametar increases, all these numbers
increase accordingly. In the truncated version, the trunca
tion pointis also computed.

For N = 64, the two version have the same statistics.
This is due to the fact that the truncation point for this case
is larger than the depth of all reachable states.

3The corresponding property on the PRISM web-site5€[ C<=T] .
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