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Abstract

The design of complex concurrent systems often involves
intricate performance and dependability considerations.
Continuous-time Markov chains (CTMCs) are widely used
models for concurrent system designs making it possible to
model check such properties. In this paper, we focus on
probabilistic timing properties of infinite-state CTMCs, ex-
pressible in continuous stochastic logic (CSL). Such prop-
erties comprise important dependability measures, such as
timed probabilistic reachability, performability, survivabil-
ity, and various availability measures like instantaneous
availabilities, conditional instantaneous availabilities and
interval availabilities. Conventional model checkers ex-
plore the given model exhaustively which is not always pos-
sible either due to state explosion or because the model is
infinite. This paper presents a method that only explores the
infinite (or prohibitively large) model up to a finite depth,
with the depth bound being computed on-the-fly. We provide
experimental evidence showing that our method is effective.

1 Introduction

Continuous-time Markov chains (CTMCs) [23], together
with their extensions with rewards, are popular means to
model performance and dependability of computing sys-
tems and the behavior of biological systems. In the context
of CTMCs, properties of interest can be specified using con-
tinuous stochastic logic (CSL) [1, 3], which is a branching-
time temporal logic inspired by CTL [7]. In CSL, the until
operator is equipped with a time interval to capture proba-
bilistic timing properties. CSL allows one to quantify the
probability of paths that satisfy a certain (e.g. nested until-)
path formula.
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We consider the model checking problem for CSL over
infiniteCTMCs. For highly structured infinite CTMCs, this
has been already studied in [22, 21]. We consider arbi-
trary infinite CTMCs, including rates unbounded CTMCs.
We focus on the CSL [3] formulas where we do not admit
steady-state operator. The resulting logic can express (pos-
sibly nested) probabilistic timing properties such as:“is the
probability to reachΨ-states alongΦ-states within time in-
terval [6.5,8.5] smaller than0.1” viaP<0.1(ΦU [6.5,8.5] Ψ).
For CTMCs, these properties constitute the arguably most
important class of CSL formulae. They can express many
performance measures, including timed probabilistic reach-
ability, various availability measures like instantaneous
availabilities, conditional instantaneous availabilities and
interval availabilities [3]. We present model checking algo-
rithms for such properties over infinite CTMCs. In practice,
infiniteness occurs in the form of unbounded behavior, such
as quantities of substances in biological/chemical modelsor
unbounded queues in queueing systems.

CSL model checking for finite CTMCs amounts to per-
forming analyses of the transient (time-dependent) proba-
bility vector [18, 3], usually carried out via theuniformiza-
tion technique [23]. Via uniformization, the transient prob-
ability can be expressed by a weighted infinite sum (of
transient probabilities computed in a finite discrete-time
Markov chain). The weights are given by a jump process
which is Poisson distributed. This infinite sum is in practice
truncatedup to some pre-specified accuracy. For a given
accuracy, the truncation-point can be computed using the
Fox-Glynn algorithm [8].

For infinite CTMCs, a variation of uniformization, called
dynamicuniformization [10], has been introduced, and fur-
ther developed intoadaptiveuniformization [26]. The basic
idea is to truncate not only the computation of the infinite
sum, but also the matrix that represents the system during
its construction. This idea has the same flavor as the princi-
ple of Bounded Model Checking [5] (BMC). For dynamic
uniformization, one has toguessa satisfactory uniformiza-
tion parameter beforehand. As indicated in [25], a too small
parameter means that the transition matrix is not a stochas-



tic matrix, while a larger-than-necessary value makes the
algorithm inefficient. Adaptive uniformization alleviates
this, which carries out the uniformization-on-the-fly with-
out a priori knowledge of the uniformization rate. In gen-
eral, the truncation-point is smaller than the one obtained
via dynamic uniformization. But the price to pay is that the
jump process is no longer Poisson and hence complicates
the computation.

In this paper, we lift the principal idea of truncated con-
struction to the CSL model checking context, based on the
work of Grassmann. We present an effective method to
compute the optimal dynamic uniformization parameter, if
it exists, in an on-the-fly manner. This enables a truncated
construction of an otherwise infinite (or very large) CTMC,
and the computation of transient probability up to the pre-
specified accuracy, which is the basis for our CSL model-
checking routine. We also consider Markov reward mod-
els (MRMs) which extend CTMCs with state or transition
rewards, allowing to express cost- or bonus-related proper-
ties [2, 19]. We show that our method can be generalized
to model check timed reward properties against infinite-
state MRMs. A typical reward property issurvivability [6],
which refers to the ability of a system to recover from dis-
astrous circumstances.

The crucial characteristic of our method is that it applies
to arbitrarily structured (finite or infinite) CTMC models
(unlike [22, 21]) and that it avoids exploring that portion
of the state space that is not needed for deciding the for-
mula, just like in BMC. The difference to standard BMC is
that the truncation point is determined from model parame-
ters as they are explored, not from the evaluation of proper-
ties. The truncation point is however dependent on the time
bounds appearing in the formula, and might get excessive
for very large time bounds.

We have implemented a prototype that computes the
truncation point on-the-fly. We have assessed the effective-
ness of truncation on a number of infinite-state CTMCs,
including a protein synthesis model, a Jackson queueing
network, and a job processing system. Further, we have
also considered finite-state CTMCs with very large state
spaces (> 108 states). In the infinite-state case, truncation
proves to be a practical approach to verify models that are
not directly amenable to finite-state methods, in the finite-
state case, significant speedups can be achieved over model
checking without truncation.
Contributions. We introduce time-bounded model check-
ing techniques for infinite CTMCs and infinite MRMs. By
a set of case studies – including a protein synthesis model,
a Jackson queueing network, and a job processing system –
we provide experimental evidence showing that our method
is effective. Further, we present a case study showing that
our method is also beneficial for finite but prohibitively
large CTMCs.

Outline of the paper. After recalling the established
model checking algorithm for CSL over CTMCs in Sec-
tion 2, we present the proposed extension to infinite CTMCs
and infinite MRMs in Section 3. In Section 4, we report ex-
perimental results. Section 5 concludes. Proofs are given in
the Appendix.

2 Preliminaries

We recall the definitions of continuous-time Markov
chains (CTMCs), continuous stochastic logic (CSL), and
the model checking algorithm for CSL over CTMCs. For
more detail, we refer to [3].

2.1 Continuous-time Markov chains

If f : X × Y → R≥0 is a function over two countable
domains, we letf(x, A) =

∑

y∈A f(x, y) for all x ∈ X

and finite subsetA ⊆ Y . Let AP denote a set of atomic
propositions.

Definition 2.1 A labelled continuous-time Markov chain
(CTMC) is a tupleC = (S, I,R, L) whereS is a countable
set of states,I ⊆ S is a set of initial states,R : (S × S) →
R≥0 is a ratematrix, andL : S → 2AP is a labelling func-
tion.

In this paper, we consider only finitely branching tran-
sitions: |{s′ | R(s, s′) > 0}| < ∞ for all s ∈ S. We
say that the rate matrix israte boundedif the supremum
sups∈S R(s, S) is finite, otherwise, it is called rate un-
bounded1. A states is calledabsorbingif R(s, S) = 0.
The labelling functionL assigns each states a set of atomic
propositionsL(s) ⊆ AP which are valid ins. If R(s, s′) >

0, we say that there is a transition froms to s′, denoted by
s → s′. For s ∈ S, let Succ(s) = {s′ | s → s′} denote
the set of states directly reachable froms. For A ⊆ S, let
Succ(A) = ∪s∈ASucc(s).

The transition probabilities are exponentially distributed
over time. Ifs → s′ is the only transition starting froms,
the probability that the transitions → s′ can be triggered
within time t is 1 − e−R(s,s′)t. Furthermore, ifs → s′

for more than one states′, there is a race condition be-
tween the transitions starting froms. In this case the prob-
ability that an arbitrary transition can be triggered within
time t is given by1 − e−R(s,S)t. The probability of tak-
ing a particular transitions → s′ from s within time t is
R(s,s′)
R(s,S)

(

1 − e−R(s,S)t
)

, and in this case we say thats → s′

wins the race.
1In this paper we consider only rate unbounded CTMCs which do not

explode [24, 25]. Roughly speaking, a CTMC does not explode implies
that in finite time with probability one only a finite number ofstates can be
reached.
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Paths and probabilistic measure. An (infinite) path is
an infinite sequenceσ = s1t1s2t2 . . . satisfyingsi → si+1,
and ti ∈ R≥0 for all i = 1, 2, . . .. For the pathσ and
i ∈ N, let σ[i] = si denote the(i + 1)-th state,δ(σ, i) = ti
denote the time spent insi. For t ∈ R≥0, let σ@t denote
σ[i] such thati is the smallest index witht ≤

∑i
j=0 tj . For

C, let PathC
∞ denote the set of all paths, andPathC

∞(s)
denote the set of all paths starting froms. For states ∈ S, a
probability measure, denoted byPrC

s , on the setPathC
∞(s)

can be defined. We omit the subscriptC if it is clear from
context.

A finite path is a finite sequenceσ = s1t1s2t2 . . . sk

for k ≥ 0 satisfyingsi → si+1 and ti ∈ R≥0 for i =
1, 2, . . . k − 1. Let len(σ) = k − 1 denote the length of the
path,first(σ) = s1 denote the first state, andlast(σ) = sk

denote the last state of the path. LetPathf denote the set
of all finite paths.

2.2 The logic CSL

The logic we consider is CSL [3] without steady-state
operators. LetI = [a, b] be an interval witha, b ∈ R≥0 and
a ≤ b. The syntax of CSL is given by:

Φ = a | ¬Φ | Φ ∧ Φ | PEp(φ)

φ = X IΦ | Φ UI Φ

wherep ∈ [0, 1] andE∈ {≤, <, >,≥}. Let σ ∈ Path∞,
the semantics of the path formula is defined as follows:

σ |= X IΦ iff σ[1] |= Φ ∧ δ(σ, 0) ∈ I

σ |= Φ UI Ψ iff ∃t ∈ I.(σ@t |= Ψ ∧ ∀t′ ∈ [0, t).σ@t′ |= Φ)

The semantics of the state formulaea,¬Φ, Φ1 ∧ Φ2 is
defined in the same way as for CTL:s |= a iff a ∈ L(s),
s |= ¬Φ iff s 6|= Φ, s |= Φ1 ∧ Φ2 iff s |= Φ1 and
s |= Φ2. A states satisfies the formulaPEp(φ) if the prob-
ability of set of paths satisfyingφ meets the boundE p.
More precisely,s |= PEp(φ) iff Pr s(φ) E p wherePrs(φ)
denotes the probabilityPr s{σ ∈ Path∞(s) | σ |= φ}.
The modelC satisfies a formula if all initial states do:
C |= PEp(φ) iff Prs0(φ) E p for all s0 ∈ I.

Dependability measures. We give several important de-
pendability measures [3] that can be expressed in CSL.
First, we introduce two shorthand notations: theeventu-
ally operator♦IΦ := true UI Φ, and thealways operator
�IΦ := ¬♦I¬Φ. Let B be a set of goal states andatB
denote the atomic proposition characterizing that the sys-
tem is in aB-state. Then,PEp(♦

IatB) expresses that the
probability of reaching aB-states within intervalI meets
the boundE p. Assume thatup is an atomic proposition

which characterizes all states in which the system is opera-
tional. The instantaneous availability at timet is expressed
byPEp(♦

[t,t]up). The interval availability can be expressed
by PEp(�

[t,t′]up) where0 ≤ t < t′. Let the state formula
Φ denote some condition, then the conditional instanta-
neous availability at timet is expressed byPEp(ΦU [t,t]up).

2.3 Model checking CSL on finite CTMCs

For a CTMCC and a CSL state formulaΦ, we recall
how to check whetherC |= Φ. Throughout this subsec-
tion we assume that the set of statesS is finite. The ba-
sic model checking strategy is as for CTL [7]. For every
state sub-formulaΨ of Φ, we recursively compute the set
Sat(Ψ) satisfying the state formulaΨ. As for CTL, atomic
propositions and Boolean connectives can be handled di-
rectly: Sat(a) = {s | a ∈ L(s)}, Sat(¬Φ) = S \ Sat(Φ)
andSat(Φ∧Ψ) = Sat(Φ)∩Sat(Ψ). The probabilistic op-
eratorΦ = PEp(φ) is more involved. The caseφ = X IΨ is
the same as in [3] and is omitted here. The most interesting
case is the formulaPEp(Φ1 UI Φ2) which is reducible to
transient analysis.

Transient analysis and uniformization. For a CTMC
C = (S, I,R, L), a uniformization rateq ∈ R≥0 is any
value satisfyingq ≥ maxs∈S R(s, S). If we observe the
state distribution ofC at time points given by a Poisson pro-
cess with rate parameterq, we obtain a sequence of state
observations, and these observations can be considered as a
discrete-time Markov chain (DTMC). This (so-called) uni-
formized DTMCuni(C) = (S, I,P, L) can be obtained
from C as follows: P(s, s′), which describes the one-step

probability to move froms to s′, equalsR(s,s′)
q

if s 6= s′

and1 − R(s,S\{s})
q

otherwise. We observe that, for an ab-
sorbing states, P(s, s′) equals1 if s = s′, and0 otherwise.
Given C, we will directly useP to refer to the transition
matrix in its uniformized DTMCuni(C).

Starting at states, the transient probability vector at time
t, denoted by~π(s, t), is the probability distribution over
states at timet. If t = 0, we have~π(s, 0)(s′) = 1 if
s = s′ and0 otherwise. We recall theuniformizational-
gorithm [23] for the computation of transient probabilities.
Let t > 0, then:

~π(s, t) = ~π(s, 0)
∞
∑

i=0

e−qt (qt)
i

i!
Pi =

∞
∑

i=0

ϕ(i, qt)~π(s, i)

(1)

whereϕ(i, qt) = e−qt (qt)i

i! denotes thei-th Poisson proba-
bility with parameterqt. In this formula, the vector~π(s, i)
is the transient probability ofuni(C) at stepi, i.e.,~π(s, i) =
~π(s, 0)Pi. Intuitively, any number of transitions might hap-
pen inC within time t, but the probability to see preciselyi
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transitions within that time is governed by a Poisson prob-
ability with parameterqt. Hence, the transient probabil-
ity of C equals the infinite sum of the transient probability
of uni(C) at stepi weighted by the corresponding Poisson
probability.

Time-bounded until. Let C = (S, I,R, L) be a CTMC,
and letPEp(Φ UI Ψ) be a CSL formula. To check the for-
mulaPEp(Φ UI Ψ) it is sufficient to compute the proba-
bility Prs(Φ UI Ψ). To see how it works, we consider
first the simple caseI = [0, t]. We let C[Ψ] denote the
CTMC obtained by makingΨ-states absorbing. More pre-
cisely,C[Ψ] = (S, I,RC[Ψ], L) whereRC[Ψ](s, s′) equals
R(s, s′) if s 6|= Ψ, equals0 otherwise. As explained in [3],
the transformation toC[Ψ] does not change the probability
Prs(ΦUI Ψ), as onceΨ-states are reached it does not mat-
ter what happens afterwards. Also the¬Φ ∧ ¬Ψ-states are
made absorbing, as once such a state is reached, the path
cannot satisfyΦ UI Ψ. The computation of the probability
PrC

s (Φ UI Ψ) can then be reduced to transient probability
analysis in the CTMCC[¬Φ ∨ Ψ]. Note thatC[¬Φ ∨ Ψ] is
equivalent toC[Ψ][¬Φ ∧ ¬Ψ].

The following theorem recalls how in generalPrC
s (ΦUI

Ψ) can be computed via transient analysis.

Theorem 2.2 ([18]) For anyC, PrC
s (Φ UI Ψ) equals

1.
∑

s′|=Ψ ~πC[¬Φ∨Ψ](s, t)(s′) if I = [0, t],

2.
∑

s′|=Ψ ~πC[¬Φ∧¬Ψ](s, t)(s′) if I = [t, t],

3.
∑

s′|=Φ

∑

s′′|=Ψ ~πC[¬Φ](s, t)(s′) · ~πC[¬Φ∨Ψ](s′, t′ −

t)(s′′) otherwise, i.e., ifI = [t, t′] with 0 < t < t′.

By Equation 1, the transient probability is expressed by
an infinite sum of the product of Poisson probability and the
transient probability in the uniformized DTMC. Using the
Fox-Glynn algorithm [8], the Poisson probabilitiesϕ(i, qt)
can be computed. For any given accuracyε, we want to
compute~π(s, t) up toε. As explained in [9, 23], the num-
ber of terms to be taken out of Equation 1 is the minimal

numberk(qt) satisfying:
∑k(qt)

i=0 e−qt (qt)i

i! ≥ 1 − ε. We fix
now an arbitrary accuracy, for exampleε = 10−6. If the
productqt is large,k(qt) is in the order ofO(qt) [8, 3]. The
complexity [3] of the above method isO(M ·k(qt′)) where
M denotes the number of transitions andt′ = sup I.

3 Model checking based on truncations

In this section, we discuss how to model check CSL for-
mulae against infinite CTMCs. To this end, our goal is to
operate on a finite truncation instead of the original infinite
CTMC. From the previous section, we know that only the

first k(qt)-terms of Equation 1 need to be considered for
computing transient probabilities. We now consider those
states that can not be reached within at mostk(qt) transi-
tions from any initial state. For such a states, we have
~π(s0, i)(s) = 0 for all s0 ∈ I andi = 0, 1, . . . , k(qt). Be-
cause of the Poisson probability, the probability of reaching
s with more thank(qt) is neglected. This suggests that for
computing the transient probabilities up to accuracyε we
can truncate the model at depthk(qt). We will follow this
intuition and discuss how to compute the truncation point
for arbitrary CSL formulas.

LetC = (S, I,R, L) be a CTMC. First, we introduce the
notion ofdepthwhich corresponds to the minimal distance
between two states.

Definition 3.1 For a given CTMCC, thedepthfunctiond :
S × S → N is defined byd(s, s′) = min{len(σ) | σ ∈
Pathf ∧ first(σ) = s ∧ last(σ) = s′}.

We also writeds(s
′) to denoted(s, s′). Intuitively,

ds(s
′) corresponds to the minimal length of any finite

path starting froms and ending ins′. We let dI(s) =
mins0∈I{ds0(s)} denote the minimal depth starting from
any initial state tos. Fork ∈ N, we define thek-truncated
CTMC as follows:

Definition 3.2 For CTMC C andk ∈ N, we define thek-
truncated CTMC ofC by: C|k = (S|k, I,Rk, Lk) where
S|k = {s ∈ S | dI(s) ≤ k} andRk, Lk are restricted to
the truncated state spaceS|k.

Recall that we only consider CTMCs which are finitely
branching. Not surprisingly, thek-truncated CTMCC|k is
always finite.

Now we define the truncation point function, which as-
signs a natural numberk(I, Φ) to a set of initial statesI
and a CSL state formulaΦ, such that thek(I, Φ)-truncated
model is sufficient to check the formulaΦ, up to accuracyε
if Φ is of the formPEp(φ). That is,k(I, Φ) is a truncation

point such thatPr
C|k(I,Φ)
s (φ) equalsPrC

s (φ) up toε for all
s ∈ I. Note that we overloadk for both truncation point
of the Poisson probabilities, and truncation point for CSL
formulae.

In Section 3.1 we discussed how to compute the transient
probability at timet for infinite CTMCs. Based on that, we
discuss in 3.2 how to compute the truncation point. In 3.3,
the extension to Markov reward models will be discussed.

3.1 Dynamic uniformization for transient
analysis

Let C = (S, I,R, L) be a infinite CTMC. We want to
compute the transient probability at timet up to accuracy
ε, starting at some initial states ∈ I. Since the model is
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infinite, we must truncate the model, otherwise it is impos-
sible. Thus, we want to find a truncation pointtr such that
the transient probability can be computed in the finite trun-
cationC|tr . This truncation pointtr depends on the set of
initial statesI, and on the time boundt, thus, we lettr(I, t)
denote this number.

Grassmann [10] introduced the notion ofdynamicuni-
formization for the transient analysis of CTMCs where one
has toguessa satisfactory rate of the dynamic uniformiza-
tion beforehand. A too small uniformization rate means that
the transition matrix is not stochastic, while a too high uni-
formization rate makes the algorithm inefficient [25]. We
are striving for an effective method to compute the adequate
dynamic uniformization rate. Our concrete goal in this sub-
section is to determine the minimal rate for states automati-
cally, if it exists. The truncation pointtr(I, t) should satisfy
the following conditions:

1. for all s′ ∈ S, dI(s′) ≤ k(qt) implies that
k(R(s, S) · t) ≤ tr(I, t),

2. there exitss ∈ S with dI(s) ≤ k(qt) such thatq =
R(s, S).

Such aq can be determined on-the-fly, i.e. during the
exploration of the state space starting from the initial states.
The idea is as follows. Letq0 = max{R(s, S) | s ∈ I}.
Initially we let k(q0t) serve as candidate truncation point
derived by only looking at the set of initial states ofC. Now
we explore the state space corresponding to the truncated
CTMC C|k(q0t) and check whether candidateq0 happens to
be the uniformization rate ofC|k(q0t) indeed. If yes, we are
finished. If not, we have foundq1 = max{R(s, S) | s ∈
S|k(q0t)}, and check whetherk(q0t) = k(q1t), in which
case we are finished as well. Otherwisek(q0t) < k(q1t)
and we thus take the latter as our second candidate, and con-
tinue the state space exploration to determine the truncated
CTMCC|k(q1t). For rate bounded models, iterating this way
must terminate at some point – because after every iteration
k(qit) is strictly greater than the previous truncation point
k(qi−1t) and is bounded byk(maxs∈S R(s, S) · t), hence
the iteration must terminate. However, this need not be true
anymore for rate unbounded models, where the right trun-
cation point could keep increasing because new explored
states have ever higher exit rates. In any case, this strategy
gives us a partial algorithm to determine the optimal dy-
namic uniformization rate on-the-fly, and terminates if such
exists. We refer to the case studyProtein Synthesisfor fur-
ther discussions.

3.2 Truncation Point for CSL formulae

Let C = (S, I,R, L) be a CTMC, and letΦ be a CSL
state formula. We compute the truncation pointk(I, Φ) for
CSL formulaΦ recursively as follows.

• Φ = a: we setk(I, Φ) = 0,

• Φ = ¬Ψ: the truncation pointk(I, Φ) is the same as
k(I, Ψ),

• Φ = Φ1 ∧ Φ2: we take the maximumk(I, Φ) =
max{k(I, Φ1), k(I, Φ2)} to guarantee the correctness
of the result,

Consider the probabilistic operatorΦ = PEp(φ). First,
consider the next state path formulaφ = X IΨ. It is suf-
ficient to figure out the set of states satisfyingΨ which
can be reached fromI directly. This suggests to take
k(I, Φ) = 1 + k(Succ(I), Ψ). Notably, k(Succ(I), Ψ)
can be computed recursively inC with another set of initial
statesSucc(I).

The most difficult part is the until path formula:Φ =
PEp(Φ1 UI Φ2) whereI = [t, t′] with t ≤ t′. The shape
of the intervalI forces us to distinguish three cases, two of
which can be grouped together:

The casesI = [0, t]. Recall that to check whether
C |= Φ, it is sufficient to calculate the probability
Prs0(Φ1U

[0,t] Φ2) for all s0 ∈ I. By Theorem 2.2 it equals
∑

s′|=Φ2
~πC[¬Φ1∨Φ2](s0, t)(s

′). We thus need to compute
transient probability at timet, starting from states0 ∈ I.
For this, all states with depth smaller thantr(I, t) must be
considered. Moreover, the transient probabilities are com-
puted in the modelC[¬Φ1 ∨ Φ2] which indicates that we
must know whether the states in the truncation satisfy the
sub-state formulaeΦ1 andΦ2. For this, we define:

k(I, Φ) = tr(I, t) + max{k(I ′, Φ1), k(I ′, Φ2)} (2)

where I ′ = {s ∈ S | dI(s) ≤ tr(I, t)} is the set
of already explored states inC|tr(I,t). Consider the trun-
cation C|k(I,Φ). The sum of Equation 2 enables us to
check whether statess with dI(s) ≤ tr(I, t) satisfies sub-
formulaeΦ1 andΦ2 which is needed for Theorem 2.2.

The caseI = [t, t] can be analyzed in a very similar
way asI = [0, t], with also the same truncation point as
Equation 2.

The caseI = [t, t′] with 0 < t < t′. For s ∈ I, we shall
compute the probabilityPr s(Φ1 U [t,t′] Φ2) using the third
equation of Theorem 2.2. For the first transient probability
~πC[¬Φ1](s, t)(s′) in C[¬Φ1], thetr(I, t)-truncated CTMC is
required. AgainI ′ denote the set of states in the truncation
C|tr(I,t). For every states′ |= Φ1 with dI(s′) ≤ tr(I, t),
the other transient probability~πC[¬Φ1∨Φ2](s′, t′ − t)(s′′)
needs to be computed. This indicates, starting fromI ′

as the set of initial states, all states with depth smaller or
equal thantr(I ′, (t′ − t)) need to be explored. LetI ′′ de-
note the set of states in the truncationC|k∗ wherek∗ =
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tr(I, t) + tr(I, t′ − t). Moreover, as in the caseI = [0, t],
to know whether the sub-formulaeΦ1 andΦ2 are satisfied,
we need explore additionallymax{tr(I ′′, Φ1), tr(I

′′, Φ2)}
starting fromI ′′. Altogether, we have that

k(I, Φ) = k∗ + max{tr(I ′′, Φ1), tr(I
′′, Φ2)}

For probabilistic operator the probability can be computed
in the truncation with the given accuracy:

Lemma 3.3 For any CTMCC and formulaΦ = PEp(φ),

Pr
C|tr(I,Φ)
s (φ) equalsPrC

s (φ) up toε, for all s ∈ I.

The complexity of checkingΦ isO(k(I, Φ) ·M |k(I,Φ)).
This complexity could, however, be exponential ink(I, Φ).
Hence, for large time bound or large uniformization rate,
we still might have the state-explosion problem.

3.3 Handling rewards

In CTMCs, states and/or transitions can be equipped
with rewards (or costs), yielding so-called continuous-time
Markov reward models (MRMs). Baieret. al. [2] intro-
duced a logic CSRL, an extension of CSL, for CTMCs with
state rewards. This extends the until path operatorΦ UI

J Ψ
with an additional intervalJ which represents a bound for
the accumulated rewards. Besides performability [20] and
other important dependability measures, Clothet. al. [6]
showed that survivability properties2 can be expressed in
CSRL.

Effective CSRL model checking is restricted to
cases where either time is unbounded, but rewards are
bounded [2], or intervals of the formI = [0, t] andJ =
[0, r] occur. In the first case, the duality of time and re-
ward can be used to apply our results directly on a model
where time and rewards are swapped [4] and hence time
is bounded. In the second case, the time boundt makes
the property obviously bounded, implying that only a finite
truncation needs to be considered for model checking. As
a consequence, our techniques developed for model check-
ing properties expressed in CSL can be extended to handle
the relevant fragment of CSRL in a rather straightforward
way, provided we are dealing with reward-bounded models,
i.e. models where the supremum of state and transition re-
wards considered are finite. This also holds for other reward
properties [2] such as instantaneous rewards and cumulative
rewards.

4 Experimental Results

This section presents experimental results with two dif-
ferent implementations of this approach. One is dedicated

2Survivability refers to the ability of a system to recover from disastrous
circumstances.

to infinite state models, the other is a variation of the PRISM
model checker [14], for very large finite models. All ex-
periments were run on a Linux machine with an AMD
Athlon(tm) XP 2600+ processor at 2 GHz equipped with
2GB of RAM.

4.1 Infinite-State Models

We have implemented a model checker for infinite
Markov (reward) models. The models are specified by prob-
abilistic programs in a guarded command language with un-
bounded integers and unbounded reals. This language is
used in PRISM [14] for finite models and was later extended
[27, 13] to infinite models. In the first analysis phase, the
model is explored as needed up to the truncation point, ac-
cording to the on-the-fly strategy to determine the dynamic
uniformization rate as described in Subsection 3.1. The re-
sulting uniformization rate and the rate matrix are then sub-
mitted to the MRMC model checker [16].

Random Walk. We consider a discrete-space,
continuous-time random walk model, depicted in the
figure below. A walker starts from the initial position
0. With a rate ofλ, the walker changes position. With
a probability ofp the field left to the current position is
chosen and with a probability of1 − p the one to the right.

−1 1 20 3

1 − pp

−3 −2

We have considered two properties: (1) a cumulative re-
ward property: the expected distance from the starting point
at a given point in time, and (2) a probabilistic reachabil-
ity property: the probability that the walker moves more
thann fields to the right within a certain time boundt, ex-
pressed byP=?(♦

≤tn ≤ 10). The corresponding results
for p = 0.25, andλ = 1 are given in Table 1, where the
analysis time given is only for analyzing the first property
after state-space exploration. The time for the second prop-
erty was no larger than10 milliseconds. As apparent from
the data, the size of the model is proportional to the depth
and the time boundt.

Jackson Queueing Networks [15]. A Jackson Queueing
Network (JQN) is a system consisting of a number ofn in-
terconnected queueing stations. Jobs arrive from the envi-
ronment with a negative exponential inter-arrival time and
are distributed to stationi with probabilityr0,1. Each sta-
tion is connected to a single server which handles the jobs
with a service time given by a negative exponential distri-
bution with rateµi. Jobs processed by the station of queue
i leave the system with probabilityri,0 but are put back into
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Table 1. Random walk
t constr. time (ms) mem. (MB) depth # states # transitions analysis time (ms) exp. dis. Probability

10 26.7 1.16 153 307 610 14.6 5.5 0.0022
20 29.0 1.16 163 327 650 16.0 10.5 0.0266
30 30.4 1.27 173 347 690 18.1 15.5 0.0688
100 42.8 1.29 243 487 970 34.0 50 0.3173

Table 2. Jackson Queueing Networks with two queues
t constr. time (ms) mem. (MB) depth # states # transitions analysis time (ms) Probability

10 4661.8 11.32 243 6887 40158 154 0.0224554
20 14937.1 15.88 343 9887 57758 314 0.2691432
30 37237.1 20.36 443 12887 75358 514 0.5351491
40 67305.7 24.95 543 15887 92958 766 0.7106415
50 111637.6 30.23 660 19397 113550 1124 0.8192941
60 161903.4 35.49 775 22847 133790 1535 0.8867635

queuej with probabilityri,j . It is possible for a job to be
put back into the same queue again, i.e.ri,i > 0 is allowed.
A JQN with two queues is depicted in the figure below:

µ2

µ1

λ

r1,0

r2,0

r1,2

r2,1

r0,1

r0,2

JQNs have an infinite state space because the queues are
unbounded. In this paper, we consider two JQN models.
The first one is a JQN with two queues where we fix the
values of the model toλ = 5, µ1 = 2, µ2 = 3 and

R =





0.0 0.4 0.6
0.8 0.0 0.2
0.7 0.3 0.0





which is the matrix of theri,j . We compute the probability
that, within t time units, a state is reached in which10 or
more jobs are in the first and20 or more of them are in
the second queue. Results are given in Table 2. The other
model is a JQN with three queues with parameters:λ = 5,
µ1 = 3, µ2 = 1, µ3 = 1 and

R =









0.0 0.5 0.25 0.25
0.6 0.4 0.0 0.0
0.6 0.4 0.0 0.0
0.7 0.3 0.0 0.0









We compute the probability, within timet, of reaching a
state in which two or more jobs are in queue1 and also
there is at least one job in queue2 or queue3. Results are
given in Table 3. As we can observe, the number of explored

states in this case study is approximately linear to the depth
and the time bound, while in principle it is quadratic for
two queues and cubic for three queues, respectively. The
linearity is owed to the fact that our model checker does not
further explore goal states.

Quasi-Birth-Death Processes. In [17], a case study is
considered that describes a system consisting of a fixed
number ofm processors and an infinite queue for storing
job requests. The processing speed of a processor is de-
scribed by the rateγ, while λ describes the incoming rate
of new jobs. If a new job arrives while at least one proces-
sor is idle, the job will be processed directly. Otherwise, it
will be put into a waiting queue. If there are idle proces-
sors and the waiting queue is nonempty, a job will be taken
from the queue and processed immediately. To model this
spontaneous transition, a rateµ ≫ λ is used.

(idle) (busy)

(queue)

p1 p2

t2

t1

t3

λ

ε

p3

λ t4

3 3

γ

The stochastic Petri net (SPN) used in [17] is depicted
in the figure above for the casem = 3. Tokens inp1 repre-
sent the number of idle processors, whereasp2 describes the
number of busy processors andp3 gives the number of jobs
in the queue. Transitiont1 models the case of an incoming
job given that at least one processors is idle, whereast4 de-
scribes the case in which all processors are busy, thus the
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Table 3. Jackson Queueing Networks with three queues
t constr. time (ms) mem. (MB) depth # states # transitions analysis time (ms) Probability
1 325541.5 53.99 153 23870 244641 561 0.4933299
2 428169.5 61.04 163 27060 277746 680 0.8288087
3 550725.1 68.65 173 30450 312951 9520 0.9454921

Table 4. Quasi-Birth-Death Process
λ constr. time (ms) mem. (MB) depth # states # transitions analysis time (ms) Probability
1 1448.0 9.05 1270 5079 12681 280 0.9993348
2 1464.3 9.24 1281 5123 12791 215 0.9483252
3 1496.5 9.24 1292 5167 12901 242 0.6983419
4 1483.9 9.37 1303 5211 13011 212 0.3965853
5 1512.9 9.37 1314 5255 13121 226 0.2147077
6 1530.4 9.49 1325 5299 13231 218 0.1249413

job is put into the queue. Transitiont2 represents the suc-
cessful termination of a job. Finally,t3 is the spontaneous
transition in case there are idle processors and the queue is
non-empty.

We consider the probability that, given that all processors
are busy and there are no jobs in the queue, withint time
units a state will be reached in which all processors are idle
and the queue is empty. We can compute the probability by
settingp1 = 0, p2 = 3, p3 = 0 as an initial state and check-
ing the formulaP=?(♦

≤tp1 = 3 ∧ p3 = 0). Results for
differentλ are given in Table 4 forµ = 100, m = 3, t = 10.
The uniformization rate of the underlying CTMC is100+λ.
As we can observe from the table, the depth is linear to the
uniformization rate.

Protein Synthesis [11]. We analyze an SPN model of
protein synthesis, as depicted in the figure below. In bio-
logical cells, each protein is encoded by a certain gene. If
the gene is active, the corresponding protein will be syn-
thesized. Also, proteins may degenerate and thus disappear
after a time. Activation and deactivation of genes, protein
synthesis (in case of active gene) as well as protein degen-
eration are modeled by stochastic rates.

λ

p1

p2

p3 · δ

µ

ν p3

t1 t2

t3

t4

In the model, the placep1 corresponds to an inactive
gene encoding the protein,p2 corresponds to an active gene,
andp3 gives the numbers of existing proteins. The transi-
tion t1 deactivates the gene with rateµ, while t2 activates it
with rateλ. If the gene is active,t3 can produce new pro-
teins with rateν. Each individual protein degenerates with
rateδ, which is modeled by the transitiont4.

We consider the property that within timet but later than
10 time units a state is reached, in which20 or more proteins
exist and the gene is inactive. This property can expressed
by: P=?(♦

[10,t]p3 ≥ 20 ∧ inactive) whereinactive is an
atomic proposition representing inactive genes.

The results forλ = 1, µ = 5, ν = 1, δ = 0.02 are pre-
sented in Table 5. In this case study, the sum of the outgoing
rates of a state mainly depends onp3 · δ. Thus the model
is rate unbounded. On newly explored states wherep3 is
higher, the uniformization rate could also be increased. For
t ≤ 45, we are still able to determine the minimal dynamic
uniformization rate on-the-fly. However, for time bounds of
about50 and beyond, the algorithm does not terminate. In
this case,k(I, qt) grows faster with the depths and the dy-
namic truncation determination never terminates. We note
that for this kind of rate unbounded model the adaptive uni-
formization method [25] could be used which remains our
future work.

4.2 Finite-State Models

We assess our method on models with very large finite
state spaces. To this end, we employ PRISM [14], a finite-
state model checker incorporating symbolic data structures
and algorithms based onMulti-Terminal Binary Decision
Diagrams (MTBDDs). We compare PRISM in original
mode with a modified version of PRISM (denoted by ‘trun-
cated’ in tables) that employs our truncation method, i.e.
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Table 5. Protein Synthesis
t constr. time (ms) mem. (MB) depth # states # transitions analysis time (ms) Probability

30 355.0 4.02 930 952 2825 10 0.005E-4
35 626.3 6.03 1546 1568 4673 72 0.016E-4
40 1366.6 10.76 3018 3040 9089 259 0.045E-4
45 10484.7 30.96 9243 9265 27764 4208 0.106E-4

it performs transient analysis and reward computation only
up to the truncation point. To avoid major changes within
PRISM, truncation-based PRISM still constructs the rate
matrix of theentiremodel beyond the truncation point.

Workstation cluster. We consider thedependability of a
fault-tolerant workstation cluster[12]. In the cluster of
workstations case study, there are two sub-clusters. Each
sub-cluster consists ofN workstations connected via a cen-
tral switch. The two switches are connected via a backbone.
Each component of the system can break down, and is then
being repaired by a single repair unit responsible for the en-
tire system. We consider the following two informal quality
of service (QoS) constraints:

• Minimum QoS requires at leastk (k < N ) worksta-
tions to be operational wherek = ⌊ 3

4N⌋.

• Premium QoS requires at leastN workstations to be
operational.

In both cases, workstations have to be connected via
switches. If in each sub-cluster the number of operational
workstations is smaller thank (and N respectively), the
backbone is required to be operational to provide the re-
quired service.

Let Minimum andPremium be two state formulae cor-
responding the informal QoS constraints described above.
We consider the following two bounded properties:

A) P=?(♦
[0,1]¬Minimum): the probability that the QoS

drops below minimum quality within one time unit.

B) the expected number of repairs3 by time point one.

In Table 6, we give statistics of the model construction
using PRISM 3.1 [14] in original mode, i.e. without trunca-
tion, and then our version, i.e. with truncation, respectively.
Note that as the parameterN increases, all these numbers
increase accordingly. In the truncated version, the trunca-
tion point is also computed.

For N = 64, the two version have the same statistics.
This is due to the fact that the truncation point for this case
is larger than the depth of all reachable states.

3The corresponding property on the PRISM web-site isR=?[C<=T].

Table 6. Model construction statistics.

N states transitions iter. time (s)
PRISM

64 151,060 733,216 133 0.27
128 597,012 2,908,192 261 0.78
256 2,373,652 11,583,520 517 3.11
512 9,465,876 46,235,680 1029 12.25

1024 37,806,100 184,746,016 2053 49.19
2048 151,109,652 738,590,762 4101 193.36
4096 604,209,172 2,953,576,480 8194 814.42

truncated
64 151,060 733,216 133 0.29

128 573,743 2,793,153 223 2.73
256 892,021 4,334,849 224 5.27
512 900,053 4,373,999 225 7.96

1024 916,225 4,452,827 227 17.08
2048 949,001 4,612,595 231 50.26
4096 1,016,281 4,940,579 239 215.88

While the number of states and transitions for PRISM
increases dramatically with parameterN , growth is slower
in the truncated version. The reason is apparent from the
column displaying the iterations of the truncated version:
much fewer iterations are done compared to PRISM. As
N increases, the truncation point grows only slowly, and
hence, only a small fraction of the state space needs to be
explored in the truncated construction.

As explained earlier, our prototype implementation con-
structs the rate matrix beyond the truncation point. This is
alleviated by the fact that the full untruncated rate matrix
is stored symbolically in the form of a multi-terminal BDD
and never unfolded explicitly, e.g. as a sparse matrix. As a
result, although truncation makes the model size (Table 6)
and analysis time (Table 7) grow only marginally inN , this
is not the case for overall analysis time, which includes con-
struction of the matrix.

In Table 7, we present experimental results of model
checking the propertiesA andB. We have computed the
results in both algorithms up to precisionε = 10−6 and in-
deed, the corresponding results are the same, up toε. Using
PRISM, the memory and the time used for model checking
increase approximately in the same way as the size of the
model. ForN ≥ 2048, PRISM cannot model check these
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Table 7. Model checking statistics.

PRISM truncated
PropertyA

N m. (kb) t. (s) m. (kb) t. (s) result
64 5,077 2.73 5,077 2.73 5.89E-8

128 16,587 11.98 16,005 11.89 5.90E-8
256 62,739 53.37 26,050 35.84 5.92E-8
512 245,086 271.05 26,602 40.44 5.96E-8

1024 969,430 1,602.93 26,802 38.88 6.01E-8
2048 – – 27,755 41.65 6.07E-8
4096 – – 29,214 46.75 6.11E-8

PropertyB
64 4,859 5.18 4,859 5.16 0.1190

128 16,446 26.67 15,990 24.02 0.2282
256 62,177 151.19 25,521 44.90 0.4203
512 243,274 1,038.58 25,945 46.17 0.7181

1024 964,916 7,160.43 26,580 49.63 1.0812
2048 – – 27,531 52.62 1.3844
4096 – – 29,373 58.29 1.5565

properties within two hours; this is denoted by –. Not sur-
prisingly, the memory and the time used in the truncated
version increase very slowly.

5 Conclusions and Future Work

In this paper, we have introduced time-bounded model
checking techniques for infinite CTMCs and infinite
Markov reward models. Our experiments have shown the
feasibility of our method, and that it can be beneficial to
apply the truncation approach also to finite, but excessively
large models.

In the protein synthesis case study, we observe that the
depth grows much faster than the time point. The rea-
son is that, as the state exploration continues, newly ex-
plored states have ever higher exit rates, thus also higher
uniformization rate. For this kind of model, it stands to rea-
son that adaptive uniformization would perform better since
the depth point should be smaller. This remains future work.
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