Diploma Thesis

A Pattern Matcher Generator for Retargetable
Code Generation and Optimisation

Gernot Gebhard
19. October 2006

Prof. Dr. Reinhard Wilhelm
Chair for Programming Languages and Compiler Construction

Prof. Dr.-Ing. Philipp Slusallek
Chair for Computer Graphics

Tutor: Dipl.-Inform. Philipp Lucas
Compiler Design Lab

Department of Computer Science
Saarland University
D-66041 Saarbriicken

Acknowledgement

First of all, I wish to thank Prof. Reinhard Wilhelm for giving me the opportunity to conduct this
work. Additionally, I thank Prof. Reinhard Wilhelm and Prof. Philipp Slusallek in advance for
the survey of this work.

My special thank goes to Philipp Lucas, who provided the topic for this diploma thesis. His on-
going assistance and many fruitful discussions concerning various aspects of this work had a
great influence on the style of this document and certain design decisions of the practical part
of this work. So, the successful completion of this diploma thesis is to great extend dueto him.

Additionally, I thank Nicolas Fritz for many refreshing discussions together with Philipp Lucas
and Prof. Philipp Slusallek.

Last but not least, I thank my friends, my whole family and — most important of all — my fiancée
Claudia for their never-ending support, without which I would not have been able to complete
this work.

Extra credits go to all authors of free software for their excellent work. This diploma thesis has
been realised entirely using free software.

About this Document

I have designed and written this paper with OpenOffice. The PDF version of this document fea-
tures clickable hyperlinks that connect references to their origin. So the reader can easily jump
to a footnote, a figure or an example, wherever referenced.

Although both figures and tables are self-explaining most of the time, to prevent misconceptions
I advice the reader toalways parse them in conjunction with the surrounding text.

Bold page numbers in the index at the end d this paper denote the most relevant page.

Declaration of Originality

I hereby declare on oath that this thesis is my own work and that, to the best of my knowledge,
it contains no material previously published, or substantially overlapping with material submit-
ted for the award of any other degree at any institution, except where due acknowledgement is
made in the text.

Sankt Ingbert, 19. October 2006.

Table of Contents

Table of Contents

L INETOAUCHION. ...ttt ettt et e st ettt e s ettt esssesestststeses sseneenesens 5
1. HiStOTy Of COMPULALION...c.cotrirrrrrreererirtrrereneresestnsssessseesesssseseseseessstssssssesessssssssssssesesssssss sue 5
2. Programming LaNGUAEES........ccceeuiiruertiinienieninieniitiessetsessestssessestssessesses sosesssesssessesssessases 7
3. Compilers and Retargetable Pattern MatChers........ccocceeveevenertrenenenreneneeneveneeseeeseeneenns 9

I1. BACKZIOUN......cotiiiiitiieienieteesetecsestee sttt e st et e e st et e e sae e e e ssesaesassassesaes sessasssessasssensasnsens 11
1. General-Purpose Programming on the GPU.........ccccceccvevnrneencnenenneeeseeeseeneeeenennes 11

L] HISTOTY . euteuerueeeeeeeeteeetestetetestessesaessessessesses e et et eseetessessessessessassassassesssens sessessnsennees 11
1.2, ATCRITECIUTttt ettt ettt se e sse et sse et ssess suessesaesneeneens 13
1.3, LANGUAZES...cviruiriiniiniiniiiiiitctiicicsentsntst sttt ae s s s s s s st satsn sanssssaesnsesnnes 15
1.3.1. RenderMan Shading LanguUAage..........ccceereeuruererreenerrerenrereneeessessesseseseseeneenes 15
1.3.2. GLSLeeatiteeeeeeercteeeeeetee et es et st e s see e s e e s saesese e s sess s essnessnnessne sesssneesssnsnnaesssnnes 16
1.3.30 HLS Lttt et esttsas s sesens saestssessessesenses 17
1,34 Currereveeeeseseeseessssssssssssssssssssss s sssssssss s sssssss st ssssssss s sssssann sesssssnees 18
135, S bbbttt bt s b 18
1.3.6. BIOOK fOF GPUS.....coveviuereeriririsieneeninisssseseseesestssssssssessssssssssess sesessessessssessessesenses 20
1.3.7. CGIS.teeteeteceeteetcctesstes et s st et e sae s e e s e s sae st e s e e sae s e e ssasssessaesaaessasssanss sesssaeannns 21

2. COMPILETS...cverritererretieniesteesesteesessesessesteessessesassesseseesessessesessassesassessesasses sesseessesssessasssens 25
2.1, GENETAl DESIZN.....uciiereeeeeeeririeieeetteeeeee ettt ettt st saeseeseeen 25
2.2. CGIS COMPILET DESIZN....ucuerrererirrererirreriniiresisreessesesessesessssesessesessssesessssesessessssssens saeses 27
2.2.1. Internal RePreSENtatiON......ccceuerereeueuererreerirreesteresesseestssesessesessssesessesens sessesseens 27
2.2.2. COMPILET StIUCLUTE.......cveeererereeieereeeeieeerteteaeseeetsteseaeesetesasseseseseseseess senessens 27
2.2.3. COAE GENETATION.ceereueeererentereeeseresteseessesesteseessssesessssessssenessssensssssesses sesseens 29

III. THEOTY vttt ettt ettt ettt se et b sttt s s e sese sttt sassenenens suesnens 31
1. GENETAL IACA. ...ttt ettt ettt sesetes sasesbessessessesaeeneeneens 31
2. Theoretical BaCKZTOUNd.......ccccvueertrrerinirenteiienieeeseeeteeesteeesseeseeseessesesessesessess sesseenees 32

2.1, BASICS.ueueiiuereiniiretiestetstsetest sttt sttt sttt et b e b et a satebeenbessterens 32
2.2. Finite State AULOIMATOT.....ccceeeueeererteeerertreerestetesessetesesseseesessesessessentesessessesessenes sess 32
2.3. Predicate Object AULOMALON.....cccoueururueecrerereerereeestseeseaeaeseesesseseseneetsssses seeneesesses 35
3. Pattern MatCher TREOTY......coeveetrerereeerinieeteieenteestseeesteesteseestesesessesestsseses sosessesnesneenees 40
B T R = L6 (<) o 0 OSSR P RROPPRRP 40
3.2, RUIE. ettt ettt ettt ettt ettt bbb ae sbestenensen 48
3.3, Pattern MatCheT.....couvueieeeeieieiteetrteetrieet ettt et se et seessesaessesses e s e e ens 54
3.3.1. Single-Pass Matching Mode........ccceeeerererererueenerenenenreeeesesesescseeesseseeseeesnens 55
3.3.2. Multi-Pass Matching MOdE.........ccceeeeuruererreenenreentnreeneseseeseeseesenesssseseeses seens 59
3.4, COMPLEXKILY..ucureuerereueeeetnerieieeeststeeese ettt s sse et esas e et s s se e et ssseseseneaeas suessen 64
BuA L. RULE ettt sttt st ettt s e et ee en 64
3.4.2. PatteIn MAtCRET .. coveueireeeireeertecenteerteeeeste ettt ettt es sssessessesseeneeneens 66

IV, Pattern MatCher GENETATOT.ccceueuerirrrertrreerterestssesesteseessssesseseessesesessssessesssessesesses seessssaens 70
L. OVEIVIEW ..ottt sttt st se st et st et s e be st e e besaent sassssesssesssessesnsanns 70
2. Pattern Matcher Description LangGUAEE........ccceueveererrerenreerenreentsrerenseenssessessessesesseenees 72

2.1, OULINE. ..ttt ettt et e s st e st sse e s e s e e ss e et e sasassesasassensnns soe 72
2.2, RUIE Sttt ettt tsse et sse et e e saeseeses sessessessessseneenes 74
2.2, 7. PIOfIlEuceiieeiieetecetretstc ettt ettt ettt et st essesseeseeneens 75

Table of Contents

2.2.2, RULE..oeeieeeeteeetrcete ettt ettt sttt et e st sse et sesassesaaene suens 76

2.2.3. IMPLICIt FUNCHOMNS. ...cctetietrieinieienisieessssesisseestesesessesesssseessesessssesessesesassesess seens 83

3. Generated Pattern MatCherccovevieirerieeeirireineerteecste et ettt sesressesaeeseseenees 86

4. DeDUZZET INTETTACE.c.cueueueieieereeeeceertreee ettt sttt ses sstesessesseseeneesens 87

V. COMPILEr INEEGTAtION. .ccueetiirreereirertetsestesteesresteessesteessessesassessesessessessssessassesessessesessessesassans 88
1. PrOTEQUISILES. .veutiueriniiriietiiinictetictetssestets bt sa et se st et sesbe st sse s sabesssesesasesssessasnsenns 88

2. Modifications to the CGiS COMPILET........cceveeurrererrrerirrieniereenteenesresressessessessessesesssenees 89
2.1. COAE GENETALION...c.ccueriereuerrreentrieniereestereteseestesesessesestsseessesestesssessesessssens saessessessenes 89

2.2, COde OPLIMISAtION. ...courururrereerererterereueeststeereeaesesesesteseseseetstssessseseseessssssesenens seesesses 94

2.3. Competitive COMPATISOTN...ccceueeuererrerrertrrerreriesessenteessestsseesesseseesessestesesss sessssssesssessses 99
2.3.1. COAE GENETATION.....cotrrierrereerrerertrseestesestssesesteseessssesessssessesesessssessesssesses ssessens 99

2.3.2. Code OPLiMISAtION...ccciirrerrererrerrererresteresrestesesessessesessessesessesss sessesssessasssesaesses 102

2.3.3. RUNTIMC. ..ttt ettt sse st et s st et s seesnesssesseesseessesnne 106

VIL Related WOTK....cceviueireeerieieenteetnieeteeesteestee et sesse et sese st e e sssestesess seessessessessesnseneens 108
L. BURG ...ttt ettt ettt et se et sse st ettt s s et sse e senessese saessessessesstenean 108

2. RECOZIIZET .c..cuveuiuereniiniteieicetete ettt st ste st s e ste st s se st e st ssesae st eseses tessesnsesstessesasesseen 108
VIL FULUTE WOTK...oueeteieeeeteteieeeteeeeeteseesestesseseste e esessesaesessessessesessessssensessssessensesessensessssensens ses 110
VIIL. CONCIUSION....ctrtirirrrueirreentseesenterestsseessesestsseestssessssesessssesesesessssesessesesassesessssesssseses essessans 112
A. Pattern Matcher Description Language Grammar...........coeeeeeerereeureresseeseesesesseesessencnss 114
B. Pattern MatCher EXAmMPIES......ccvcuveruerirenrentnenenteenensesesessesessessessesessesssesses sesessesssessaasees 115
1. INVOKITIE tPINIE. . cueeveuereieinerienteteenteesteseestesetssesestesessssesessssesessesessssensssesenssses sesessessesseenses 115

2. LISt SOTTINIZ..c.ueeuieeeerterestenteneseseseetetetestessessessessassessessessessseseessessessessessessessessesssenes sves 116

3. CAlCUIALOT . c.ueeveuerereeeeeieteeeeet ettt st ae et st sseeasse et sse st sesesaeseessesastesenassesenessenenes oe 117
LIS Of FIZUIES.c.cviueueueiirieieieueetntsteteseeettetess e esetstssese e e et tsss s e sestastsseses suteneseseeneesenseneenes 119
LIST Of TADIES....cueeveeeeereteeeteteeeestetete e te e stesae e te s e e sesaesessesse e ssessensesansessssansens ssesssensesssensen 120
BIDIIOZIAPRNY ..c.ceveuieieueteieirtierietresteteeste ettt ettt se sttt ese e be e e sse et ssestesesestesentesens sueenes 121
IAEXK. ettt ettt ettt et st ettt st ettt s s et e se s b et s senes seeneeatententensenten 124

I Introduction

Abstract

Depending on its internal structure, adding support for an all-new target platform or introdu-
cing a new kind of optimisation to a compiler that already supports multiple architectures can
become a complex and confusing affair. Especially when new architectures with different fea-
tures are released at a very fast rate, as it is currently experienced in the area of graphics pro-
cessing units, this becomes even more problematic. Thus, modifying the compiler turns out to
be error-prone and time-consuming. Employing generated rule-based pattern matchers, which
are capable of generating and optimising code for different target architectures at once, will
help to overcome these problems. Instead of having to cope with low-level code, a developer
can finally attend to the essential thing, increasing his productivity, by specifying rules that de-
scribe how certain code patterns should be treated.

Exemplified on cgisc, a compiler for the GPU programming language CGiS, the present work
demonstrates the advantages and disadvantages of using these generated pattern matchers in
the compilation process.

I. Introduction

1. History of Computation

Tools have been a constant companion of the human civilisation. The ability to create and use
complex tools definitely ensured survival of mankind since the beginning of history, and thus
there exists almost no aspect of human live where tools are not
being employed. Hence, it is not very surprising that the ap-
plied mathematics has benefited much from the invention of
certain computational devices.

The first available device was either a Chinese or Babylonian
invention of the antiquity and is nowadays known as the aba-
cus. The abacus is a board with free-moving beads that are
aligned in rows of bars or chinks. The value of a bead depends
on its position within these rows, as Figure 1.1 shows. In addi-
tion to the four fundamental arithmetic operations, the abacus Figure I.1: Russian abacus
can also be used to compute square and even cubic root [1]. showing the number 1024.

Thousand
Hundred
Ten

One

In 1623, Wilhelm Schickard [2] invented the first mechanical calculator, the calculating clock,
which supported addition and subtraction of six-digit numbers. Multiplication, division and
square roots were computable using a set of Napier's rods (or bones), which are a special kind
of abacus, that was mounted on the machine. Other mechanical calculators followed, as e.g.,
the Pascaline in 1645, named after its inventor Blaise Pascal, and the Stepped Reckoner that was
introduced by Gottfried Wilhelm Leibniz in 1671 developing Pascal's ideas. Like all other mech-
anical devices that have been constructed thereafter, none of them could be programmed, be-
cause all supported operations were part of their design. So to speak, all these machines had
fixed programs. Reprogramming such a machine thus meant either restructuring, rewirirg or re-
designing, which is obviously not reasonable for an arbitrary computation.

Publishing the design of a mechanical general-purpose computer, the analytical engine [3], in
1831, Charles Babbage took an important step in the history of computers. The idea came up
during the development of the differential engine, which is a mechanical computing device for
tabulating logarithms and trigonometric functions by evaluating approximating polynomials, as
he realised that a much more sophisticated design was possible. Although the design was ahead

-5

Chapter I - Introduction

of the times by at least one hundred years, the machine was actually never built due to finan-
cial, legal and political reasons. Until the midst of the 20" century, there was no comparable ap-
proach.

Between 1934 and 1938 Konrad Zuse has developed the Z1, the first mechanical program-con-
trolled computer. Unfortunately, the machine was working unreliable due to mechanical prob-
lems that rendered the machine unusable in practice. Unsatisfied with the first attempt, Zuse fi-
nally managed to create the Z3 using telephone relays in 1941 [5]. It was the first fully func-
tional, programmable computer, on which an arbitrary computation could be implemented'.
Not knowing Zuse's invention, John von Neumann published the von Neumann architecture?
three years after the construction of the Z3. The first working von Neumann machine was the
Manchester Small-Scale Experimental Machine (SSEM) (also nicknamed Baby) that was built at
the University of Manchester in 1948 [6]. In the years to come, several other implementations
of this architecture followed, which quickly made it the most widely spread architecture of the
world. Thus, it is unsurprising that the von Neumann architecture was taken as a basis for al-
most every modern hardware architecture, such ase.g., IA-32, IA-64, AMD64 or RISC.

The computers of the first generation were very energy-hungry machines that were built with
relays or vacuum tubes. A power consumption of at least ten kilowatts was not uncommon at
these times. In the late 1950s transistorised computers, normally referred as computers of the
second generation, replaced the bulky machines of the first generation substituting relays and
vacuum tubes with the much smaller and more reliable transistor, which has been invented in
1947. However, these computers were still very expensive and were thus mainly used by gov-
ernments, universities or large companies. The invention of the integrated circuit, independ-
ently achieved by Jack St. Clair Kilby and Robert Noyce in 1958, started the miniaturisation
process resulting in a dramatically increasing production of the even smaller computers of the
third generation. All computers of the fourth generation, to which today's machines belong, fea-
ture the microprocessor that has been developed at Intel in 1971. Since then, the computing
power has been steadily increasing following Moore's Law® accompanied by the ongoing mini-
aturisation process, which resulted in the highly efficient computers of the modernity.

In 1982 the Japanese Ministry of International Trade and Industry started an ambitious project
to realise a fifth generation computer that should benefit from massive parallelism. Although a
working Parallel Inference Machine (PIM) has been constructed in 1991, the whole project was
stopped two years afterwards [8]. The PIM never met with commercial success, and the propri-
etary architecture was ultimately outstripped in computation speed by less specialised hard-
ware, such as e.g., by Intel's x86 machines.

1 The Z3 was proven to be Turing-complete in 1998 [4].

2 Von Neumann's approach was not very different from Zuse's computer. The main difference was that
von Neumann's design does not separate instructions and data from each other. Computers following
this design are also called stored-program computers.

3 Gordon Moore predicted in 1965 that the amount of transistors on a chip, which is a rough indicator
for its computing power, would double every two years [7].

-6 -

2. Programming Languages

2. Programming Languages

The very first computers featured a small set of machine instructions, which modified the
memory or performed simple arithmetic operations. Although machine code is sufficient to im-
plement an arbitrary algorithm, writing a program on this lowest level of hardware abstraction
was — and still is — a fault-prone and time-intensive matter. To speed up the program develop-
ment process, another way of telling a machine what it has to do had to be found.

The human language unfortunately seemed unsuitable for this procedure, as there was — and
still is — no reasonable way to translate it into machine code®. Thus, there was need of an
intermediate language that can be easily translated into a sequence of machine instructions and
that provides a quickly-understandable abstraction of the underlying hardware. Naturally, a
program written in such a language must first be converted into machine code, before the com-
puter is able to execute the program. The translation is usually done by an auxiliary program
called compiler, which Section 3 briefly introduces and Chapter II discussesin more detail.

The history of programming languages can be dated back to Charles Babbage and Ada
Lovelace, who thought of some way to instruct the analytical engine. Because — as mentioned
above — this engine was never built, this was only theoretical work. The Plankalkiil is believed
to be the world's first (non-von Neumann®) high-level programming language that Konrad Zuse
has been designed. Although Zuse published his design lately in 1972 [9], it is generally accept-
ed that Zuse has invented the Plankalkiil between 1942 and 1945 [10]. Albeit the Plankalkiil
never awoke from its sleeping beauty slumber, as Zuse liked to say, a compiler for the
Plankalkiil has been eventually implemented in 2000 [11]; five years after his death. Between
1954 and 1957 an IBM team led by John Warner Backus — the co-inventor of the Backus-Naur
form — introduced FORTRAN and the first compiler that has ever been available. Numerous oth-
er programming languages followed, resulting in more than a thousand known languages, most
of which are domain-specific (tailored to a certain problem). Nowadays, about twenty of them
are widely-used, such as e.g., C, Java, Perl or Python.

Depending on their hardware abstraction level, the known languages are classified as either
low-level (assembler) or high-level, hardware-independent programming languages. The latter
of them are further divided into five classes:

« In an imperative or procedural language, an algorithm is implemented by specifying how
the computation has to take place. An imperative program is thus a sequence of opera-
tions processing the available data. Being close to the hardware, imperative programm-
ing languages are commonly used to program hardware (e.g., the Linux kernel that is
implemented in C). However, as these language provide a rather low abstraction of the
underlying hardware, developers of complex software systems nowadays make use of
more sophisticated programming languages. Well-known imperative programming lan-
guages are Ada (named after Ada Lovelace), BASIC, C, COBOL or FORTRAN.

+ Instead of specifying how to compute the result, declarative languages are designed for
writing programs that describe what is to be computed. There are different approaches
realising this programming paradigm. On the one hand, functional programming lan-
guages such as LISP or Standard ML aim at expressing algorithms as close as possible in

4 It is unclear whether this would remedy the complexity of writing computer programs, as stated in
SIGPLAN notices, Vol. 2, No. 2: “Make it possible for programmers to write programs in English, and
you will find that programmers cannot write in English.”

5 Every language abstracting the von Neumann hardware architecture is called a von Neumann pro-
gramming language. Abstracting a different kind of hardware, the Plankalkiil does obviously not be-
long to this class of programming languages.

-7

Chapter I - Introduction

form of mathematical functions. On the other hand, logic programming languages make
use of mathematical logic. The most famous programming language of this kind is Pro-
log. Declarative programming languages are very popular in applied mathematics, but
are seldom used to implement non-mathematical applications.

« Distributed or parallel programming languages are employed, if a program should be
written for a parallel or distributed architecture. Specific synchronisation problems arise
out of this kind of programming that can be handled using special language constructs.
To satisfy the needs, new languages (occam or Parallaxis) have been designed, and even
existing languages, such as e.g., FORTRAN or Pascal, have been extended by appropri-
ate language constructs. Many of the parallel programming languages have been de-
veloped as research languages rather than as languages for production use. However,
with the increasing number of processing cores in modern computers, these languages
might become more and more interesting for software developers.

« Object-oriented languages comprehend each important information as some kind of ob-
ject that is described through the data it stores (member variables) and the operations it
may perform (member functions). These languages have revolutionised the art of com-
puter programming, as they provide a different kind of abstraction of the ongoing pro-
cesses. Instead of having functions calling each other, an algorithm is implemented by
having several objects interact among one another. There exist pure object-oriented lan-
guages such as Smalltalk, Eiffel or Java as well as hybrid languages, such as e.g., C** or
Object Pascal, which were extended by object-oriented language constructs.

« Aspect-oriented languages try to assist the developer by pushing the level of abstraction
even higher [12]. A language that belongs to this class is in general not a stand-alone
language. This means that aspect-oriented languages are not used to implement a whole
algorithm. Instead, these meta-programming languages are designed to aid organising
the structure of an algorithm. The idea is based on the observation that whenever func-
tional units with different internal structure (e.g., two different functions) share some
kind of behaviour, code is very often duplicated. In the long run, this does not tend to be
maintainable at all. To keep up the maintainability, these shared behaviours — called as-
pects in this context — are to be expressed in an appropriate aspect-oriented language.
Although sounding revolutionary, these meta-languages are not well-established.
However, there exists an aspect-oriented extension for Java, named aspect;.

It should be mentioned that the above language concepts are not mutually exclusive. As object-
oriented language features are completely orthogonal to imperative language constructs, a lan-
guage may combine both aspects. Thus, Java can be understood as an object-oriented as well as
an imperative language. Thus, programming languages cannot be strictly divided into disjoint
classes, which however does not mean that the above classification is wrong. It can still act as a
guideline when trying to identify certain key features.

3. Compilers and Retargetable Pattern Matchers

3. Compilers and Retargetable Pattern Matchers

As indicated above, compiling a program — translating it into machine code - is necessary be-
fore it can be executed; regardless of the employed programming language. Before the code
generation takes place, the compiler first analyses the program's syntactical and semantic cor-
rectness and usually creates an abstract internal representation of the program. This is done by
the compiler's front end. If an error has occurred, the compiler stops processing, showing the
most reasonable cause. Otherwise, the compiler finishes with code generation and optimisation,
which constitute the compiler's back end, by converting the internal program representation
into a sequence of machine instructions for the target architecture.

On a first look, this method sounds so generic that it appears feasible to implement an universal
compiler capable of translating any source language for an arbitrary target architecture.
However, besides the knowledge about the different programming languages, such a compiler
must also have certain information about the target platform. Although nearly every widely-
spread architecture, such as e.g., IA-32, IA-64, AMD64, Sparc, ARM, RISC or MIPS, is an in-
stance of the von Neumann architecture, they all differ in certain key features, such as the
amount of available registers and their types or the available instruction set. Disappointing as it
is, no working universal compiler has ever been implemented up to the present time. Thus,
state-of-the-art compilers that support n languages and m architectures consequently feature n
different front ends and m different back ends.

To minimise the complexity of a compiler, the idea came up to generate portable byte code in-
stead of native machine code, which would make only one back end necessary. Rather than
writing multiple back ends, a byte code interpreter or virtual machine would have to be imple-
mented on each desired platform. In spite of a probable performance decrease® when interpreti-
ng code instead of executing it, this idea has become quite popular and has already been real-
ised for several languages, such as Java or .NET.

However, not every hardware architecture is suitable for implementing virtual machines, as, for
instance, modern graphics processing units (GPUs). They are an interesting target for general
purpose programming, because their highly parallel architecture enables them to perform cer-
tain computations much faster than most recent processors [13]. Because there are many differ-
ences between CPU and GPU on the architectural level, as there are e.g., no integer data types
available, exploiting these computational resources only can be done by introducing new lan-
guage constructs, which finally results in new languages that provide some kind of abstraction
of the underlying GPU architecture. As hinted, making use of their computing power cannot be
achieved by implementing a virtual machine: this would awfully diminish all their advantages.
It is for this reason that a compiler for any of these languages must provide a different back end
for each supported architecture. Because new GPU architectures are currently released at a fast
rate, this becomes even more problematic.

Exactly at this point, compiler developers would benefit greatly from a pattern matcher generat
or creating retargetable pattern matchers that replace the previous code generation and optim-
isation mechanism. Supporting new hardware architectures can then be realised more quickly
by adding new rules describing how to handle code patterns for the new target. Additionally, it
is no longer necessary to cope with the code generation and optimisation algorithms, because
everything is handled automatically by generated pattern matchers. This enables a developer to
focus earlier on more important matters, which will finally increase their productivity.

6 This problem no longer exists, because modern virtual machines make use of just-in-time-compilers
that translate the byte code into native machine code once, whenever required. After this translation
process is done, a performance decrease is no longer measurable.

-9

Chapter I - Introduction

The work at hand presents the theoretical background and the implementation of a pattern
matcher generator that creates retargetable pattern matchers, which can be employed in mul-
tiple environments. On the basis of cgisc, a compiler for the programming language CGiS that
abstracts recent GPU architectures, I will demonstrate that it is feasible to replace the code gen-
eration and optimisation process of a compiler using the generated pattern matchers as a multi-
target back end.

This document comprises eight chapters that are based on each other. Chapter II will provide all
necessary information about the environment in which the pattern matcher generator is being
employed. The complete theoretical background is covered in Chapter III, whereas details about
the implementation are discussed in Chapter IV. Discussing the requirements that are necessary
to make a compiler work with the generated pattern matchers and demonstrating a code
generation and a code optimisation pattern matcher by means of the CGiS compiler, Chapter V
is followed by a comparison between the presented approach with related work in Chapter VI.
The document finally concludes with an outlook on future extensions to the pattern matcher
generator in Chapter VII and with a list of all made achievements presented in Chapter VIIL.

-10 -

II. Background

II. Background
1. General-Purpose Programming on the GPU

1.1. History

In the 1970s, the first computers capable of drawing images were available, which was a major
step towards all-purpose machines in the development of computers. This feature enabled them
to be employed in applications in which text output is not sufficient, such as computer games.
Because the first computers with this capability were too slow to handle the graphical output in
reasonable time, they had to rely on auxiliary hardware, which finally led to the development
of the first graphics chips in the late 1970s.

These chips are not be understood as the first available graphics cards, because they had no
shape-drawing support and served as some kind of coprocessor’ to execute certain drawing op-
erations, such as moving bitmaps around, the CPU was too weak for. An important chip of this
time was the blitter®, which made a noticeable performance increase possible. The blitter used
the Bit BLT? algorithm, which David Ingalls invented for the Xerox Alto computer in 1975 [15],
to speed up copying and moving of data in memory. Because the blitter was specialised on bit-
map-data transfer, the chip could move bitmaps more quickly around than the CPU. The first
mass-market computer featuring a blitter was the Amiga that has been introduced by Com-
modore in 1985.

As the chip manufacturing process improved, it was eventually possible to combine drawing op-
erations and the advantages of the first graphics chips on a single board and later in a single
chip, which resulted in the first available graphics cards in the late 1980s. Although not being
as flexible as general-purpose coprocessors, this specialised graphics hardware finally surpassed
them, such that these coprocessors soon vanished from the market. As 1991 S3 published the
first single-chip two-dimensional accelerator named S3 86C911, the graphics chip development
entered its hot phase. Alongside with improvements to manufacturing methods came a steady
increase in performance and capabilities of graphics cards, which soon enabled more advanced
graphic chips to handle video playback in real-time.

A few years after the first single-chip graphics accelerators have been released, 3dfx Interactive
began, as its name suggests, to develop three-dimensional graphics controllers. In 1996, 3dfx
released the first graphics card that accelerated the rendering of three-dimensional images.
Consisting of 1 million transistors and running at core speed of 50 MHz, the Voodoo Graphics
was capable of rendering 1 million vertices per second. Only nine years after 3dfx released its
card, NVIDIA, which bought up 3dfx in December 2000, introduced the GeForce 7800 GTX that
comprised 302 million transistors and rendered about 1.1 billion vertices per second, while run-
ning at 550 MHz.

Within less than a decade, the performance of three-dimensional graphics accelerators has been
increasing at a much faster rate than that of general-purpose processors [16]. The given num-
bers show that the amount of transistors on graphics chips has been increasing by a factor of 32
every two years and has thus been 16 times faster than the foretold processor transistor count
growth in Moore's Law. Until now, this trend held on, and there is still no evidence indicating a

7 As the development of display processors began, it soon turned out that simple chips did not satisfy
the needs of computer graphics [14]. Thus, the first graphics chips were in fact general-purpose pro-
cessors, which made their construction a costly affair.

Blitter is an acronym for block image transfer.

9 Bit BLT abbreviates bit block transfer. It is also known as blitting in computer graphics.

(0}

-11 -

Chapter II - Background

slowdown in this evolution. Instead, the converse seems to happen. There is no other area of
computer development that has ever experienced a boom like this.

After general-purpose graphics coprocessors have been abandoned, the chip industry concen-
trated on specialised hardware, which made the manufacturing process much cheaper. Thus,
graphics cards unfortunately offered no way of implementing any other graphical effects be-
sides the built-in ones, such as transform and lighting. But since the progressing manufacturing
technology allowed more complex chips that performed more complex operations, this draw-
back was soon going to be removed. In 1999 NVIDIA introduced the register combiners as an
OpenGL 1.2 extension [18], which was the first mechanism that allowed a variety of computa-
tions executed on the GPU on a per-pixel level, including signed addition, signed multiplication,
and dot product. The NVIDIA GeForce 256 (NV10) was the first graphics cards that supported
this extension. A vendor-independent standard was eventually available, as vertex and pixel
shaders have been published with DirectX 8 in November 2000. Vertex and pixel shaders are
(small) assembly programs that are executed on the graphics chip. As their name suggests, ver-
tex shaders operate on vertices, which enables them to manipulate the geometry of the scene,
whereas pixel shaders are employed to compute the textures that are put on the scene's poly-
gons. A corresponding approach was officially introduced in the OpenGL 2.0 core specification
that has been released in October 2004 [19], whereas vertex and pixel shaders are called vertex
and fragment programs'®. To keep it simple, I will stick to the terms vertex and pixel shaders for
the rest of this document.

This new standard enabled developers to implement graphical effects by writing shaders that
are guaranteed to run on any graphics card that supports the standard without the need for any
prior modification. NVIDIA's GeForce 3 (NV20) and ATI's Radeon 8500 (R200) were the first
graphics cards available that implemented this mechanism (see Table II.1 for supported stand-
ards of most recent graphics cards). Due to their programmability, graphics cards that support
vertex and pixel shaders are also referred as graphics processing units (GPUs).

Graphics Card Chip OpenGL DirectX Pixel Shader

ATT X1900 XTX R580 2.0 9.0 3.0
ATT X800 XT PE | R480 2.0 9.0 2.0
ATT 9100 IGP RC350 2.0 8.1 1.4
NVIDIA 7800 GTX | G70 2.0 9.0 3.0
NVIDIA 6800 NV40 2.0 9.0 3.0
NVIDIA FX 5800 | NV30 2.0 9.0 2.0

Table I1.1: Supported standards of most recent graphics cards.

It soon turned out that — besides graphical effects — it is possible to use the GPU for general-pur-
pose computations [20], as both vertex and pixel shaders have access to a rich instruction set
that includes many vector operations and that just recently supports branching. However, im-
plementing an arbitrary algorithm on the GPU is not as easy as it sounds, because there are
many differences between CPUs and GPUs that are to be considered. Besides going into the pe-

10 Although not being part of the OpenGL core specification, the vertex and fragment program exten-
sions were already supported by some vendors after they have been officially approved in September
2002. NVIDIA has introduced its own extensions in 2000 (NV_vertex program) and 2001 (NV _frag-
ment_program), followed by ATI's extensions that were published in 2001 (EXT vertex shader) and
2002 (ATI fragment shader). See [17] for their documentation.

-12 -

1. General-Purpose Programming on the GPU

culiarities of the GPU architecture, the following section identifies the reasons why the GPU is
an interesting target for generalpurpose programming.

1.2. Architecture

Modern graphics cards feature 256 to 512 MB DDR3 RAM accessed through a 256 bit wide data
path with a bandwidth of more than 50 GB/s. Their cores are running at 550 to 650 MHz driv-
ing up to eight vertex and at most 48 pixel shader processors in their computations. As it ap-
pears to the host system, exactly one shader of the appropriate type is executed in parallel on
these processing units, while operating independently on the input data. With this enormous
computing power, modern graphics cards are capable of rendering photo-realistic images in
real-time. Figure II.1 demonstrates the conversion of a rather simple three-dimensional scene
into a two-dimensional picture. Before the final image can be displayed on the screen, two
stages of the rendering process have to be passed. During the rasterisation stage the three-di-
mensional scene (vertex data) is projected onto a two-dimensional plain, which is a two-dimen-
sional bitmap in this context. This step takes place in the graphics card's rasteriser (as shown in
Figure I1.2). Afterwards, the pixels of the bitmap are coloured according to light sources, as-
signed textures and the geometry of the scene. The resulting image is eventually put into the
frame buffer, from where it can be displayed on screen.

Per-Vertex 1] I
Operatiogs Per-Pixe
Rasterisation Operations
o []
Vertex Data Pixel Data Frame Buffer

Figure I1.1: Abstract view on the GPU rendering process.

The high parallelism enables modern graphics cards to perform certain computations much
faster than recent CPUs. Although these vast computational resources are required to render im-
ages in real-time, they are primarily lying dormant, as graphics cards deal most of the time with
drawing the graphical user interface of an operating system. But, as hinted previously, it is pos-
sible to exploit this raw computing power for general-purpose programming by means of shader
programs. Because modern graphics cards feature in general much more pixel than vertex pro-
cessors, vertex shaders are uncommonly used when an algorithm is ported to the GPU. Addi-
tionally, vertex processors had until recently no access to the texture memory, which is usually
misused to store input data. Without access to the texture memory, it was infeasible to provide
a vertex shader with arbitrary data. Thus, pixel shaders are the tool of choice in general-pur-
pose programming on the GPU.

Besides using the texture memory to receive its input data, a shader program disposes of several
temporary registers to compute its results. Instead of colouring pixels to draw a nice image, a
general-purpose pixel shader misuses them to store the computation results that are finally put
into the frame buffer, from where it can be downloaded into the computer's main memory after-
wards. As images are rendered into the frame buffer, it also valid to speak of rendering the res-
ults. However, there are certain peculiarities of the GPU that have to be considered, when im-
plementing an algorithm.

The first difference to observe is that the GPU architecture is not a von Neumann architecture,
because program storage and data storage are — if not physically — logically separated, which
makes it impossible to implement self-modifying programs on the GPU. This is furthermore re-
flected in the fact that memory can either be used for reading or writing, but not for both at the

-13 -

Chapter II - Background

same time. It is additionally not possible to realise algorithms that strongly depend on integer
arithmetic, such as DES [22], because the GPU totally lacks integer data types and operations.
In fact, every memory cell, be that one of the texture memory or of the frame buffer, or even a
temporary register, is a colour with four components of float type. Moreover, arbitrarily large
chunks of data cannot be uploaded into the texture memory, as textures may currently only
have a maximum width and height of 4096 pixels. Too large data blocks must be arranged such
that they fit into a single texture by making use of other colour components — if this is possible
at all — or by dividing them into multiple textures. The latter is unfortunately not always an op-
tion, because pixels shaders cannot read from arbitrarily many textures, and some architectures
do not support rendering into multiple textures, such as the NVIDIA NV30. Besides the limited
amount of accessible textures, pixel shaders must not be arbitrarily long. Thus, a pixel shader
containing too many instructions or using too many textures must be split up into a couple of
interdependent pixel shaders, each of which computes intermediate results for the next one un-
til the final results can be calculated. Obviously, it is not possible to convert each program in
this fashion. To prevent a program from looping endlessly and thus blocking the GPU, recent ar-
chitectures that support loops and subroutine calls stop the program after a specific number of
instructions have been executed". Recent GPUs terminate a shader after the 65536th executed
instruction.

Although these restrictions appear massive, they are largely compensated by the highly parallel
hardware that enables modern GPUs to perform certain computations much faster than recent
CPUs. Additionally, the set of implementable algorithms is still large enough, which finally
makes the GPU a promising target for generalpurpose programming.

»| Vertex Vertex
Processor Processor

Rasteriser

' v v v

Pixel » Pixel Pixel Pixel

>
_ Processor Processor Processor | Processor
\: , Data ‘ ‘ ‘ ‘

y

] Part of Memory
Q Non-Programmable Hardware ~— ________¥________
D Programmable Hardware

—» Data Flow

Figure I1.2: The GPU rendering process in more detail.

11 This might soon change, as Direct3D 10 shaders will have no instruction count limit [21]. To main-
tain the systems stability, the operating system will then have to monitor the GPU to determine
whether the graphics card has hung up and requires resetting.

- 14 -

1. General-Purpose Programming on the GPU

1.3. Languages

As mentioned in the previous section, pixel shaders are just assembly programs. Because writing
a program in an assembler language has always been both unintuitive and complex at the same
time, several high-level (shading) languages that provide different levels of abstractions of the
GPU architecture have emerged to unburden developers from the harsh reality of assembler
programming. Being only designed to aid developers in coding visual-effect shaders, most of
these languages still provide a rather low abstraction and thus cannot be used to fully exploit
the high parallelism of the GPU architecture. To simplify the development of data-parallel al-
gorithms a higher level of abstraction is required, as provided by Brook for GPUs and CGiS.

The following sections briefly introduce the most interesting languages available, whereas an
emphasis is put on CGiS, as it is of further interest within this work. Not being discussed in this
chapter — but worth mentioning — are the Stanford real-time shading language (RTSL) [23] on
the one hand, and the Accelerator library [24] on the other hand.

1.3.1. RenderMan Shading Language

Shading languages have been invented long before the first graphics cards supported vertex and
pixel shaders. In 1984 Robert L. Cook introduced shade trees [25], which offer a more sophist-
icated method of describing the shading properties of a surface. Instead of specifying the shad-
ing behaviour through a small set of variables or fixed models, such as the reflection model
(e.g., Gouraud [26] or Phong [27]), a user could design a variety surface properties in this tree-
structured shading model that only supported a handful arithmetical operations.

The invention of shade trees eventually led to the first available shading language that Pixar has
published together with the RenderMan Interface Specification in 1989 [28]. This interface has
been designed to simplify the communication between modelling and rendering programs cap-
able of generating photo-realistic images. Describing three-dimensional scenes with three-di-
mensional primitives, this concept bears a strong resemblance to PostScript, which is used to
design two-dimensional page layouts. Alongside with the RenderMan Interface, Pixar published
the RenderMan Shading Language that describes surface properties in special procedures
(shaders). In contrast to the other (shading) languages being discussed in the following sec-
tions, the RenderMan Shading Language is employed in offline rendering that aims at the best
image quality possible.

Although not being executed on any GPU, the RenderMan Shading Language is still worth men-
tioning, because it can be understood as the predecessor of all shading languages. The language
further extends the idea of shade trees, by allowing the user to write arbitrarily complex de-
scriptions of surface properties. With the PhotoRealistic RenderMan, Pixar managed to create
the first implementation of the RenderMan Shading Language, which was in fact the first shad-
ing language that has ever been implemented.

In contrast to the two available shader types on recent graphics cards, the language distin-
guishes six different shader types:

« The optical properties of illuminated objects are being modelled by surface shaders.
They compute the output colour and opacity of a point on the surface by taking the in-
coming light and the physical properties into account.

+ Any kind of light source can be implemented using light source shaders.

« Not being associated with surfaces, volume shaders modify the colour of light rays that
pass through some part of space. Effects like fog can be realised with this shader type.

-15 -

Chapter II - Background

« Displacement shaders are related to surface shaders, as they can move surfaces around
and manipulate the surface normal, resulting in a different illumination behaviour.

+ In addition to displacement shaders, transformation shaders can additionally be used to
modify the geometry of the scene. They describe a non-linear transformation of all
points in space to new points.

« Comparable to image filters, imager shaders perform a transformation on the final pixels
of the resulting image.

On a first look it appears that surface, light source, volume and imager shaders correspond to
pixel shaders, whereas displacement and transformation shaders are some kind of vertex
shader. However, as vertex and pixel shaders are strongly tied to the GPU architecture, it is un-
clear whether RenderMan shaders can be easily translated into vertex and pixel shaders.

1.3.2. GLSL

In conjunction with the OpenGL ARB'", 3Dlabs developed the OpenGL Shading Language
(GLSL, also known as glslang), which is the latest shading language available. Originally being
introduced as an extension to OpenGL 1.5 in 2003, the OpenGL ARB has formally included
GLSL in the OpenGL 2.0 specification that has been released in 2004 [19].

The GLSL syntax is a mixture of C and C** with a strong emphasis on C. GLSL omits most C**
language features except for the concept of overloading functions and constructors that are
used to initialise variables and to convert types. Because there are no implicit type conversions
and no explicit casts, calling a constructor is the only way to perform a type conversion. Enums
and unions are not supported, whereas GLSL provides all basic arithmetic types alongside with
vector, matrix and structure types. Additionally, texture handles have been introduced to ab-
stract the texture access. GLSL contains all operators of C and C** except for bitwise and point-
er operators. Bitwise operators are not provided, because there are, as mentioned in Chapter I,
no integer data types available on the GPU. Albeit arrays and the array subscript operator are
supported, pointer operations cannot be realised, as the GPU only has limited indirect address-
ing capabilities that restricts the GPU to only allow reading from registers and textures. Thus,
there exists no GPU (shading) language that provides pointer data types. GLSL supports func-
tion calls, whereas neither direct nor indirect recursion is permitted. Additionally, labels as well
as switch and goto statements are not supported due to the limitations of the GPU architecture.

void main (void)
{

gl _FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

Figure I1.3: Simple GLSL pixel shader that colours the resulting pixels red.

Figure I1.3 shows a simple GLSL shader. As the main function misleadingly suggests, shaders
written in GLSL are not stand-alone applications. They always require an auxiliary program that
makes use of the OpenGL APIL. To run a GLSL shader, it has to be passed as string via the
OpenGL API to the vendor's driver, where it will be compiled before it is finally executed on the
GPU (see Figure I1.4). The main advantages of this approach are that an external compiler is
not necessary, and that new shaders can easily be created on the fly. However, results and per-
formance of the generated shaders might vary from driver to driver, as the quality of the

12 Excerpt from [29]: “The OpenGL Architecture Review Board is an independent consortium formed
in 1992 that governs the OpenGL specification and evolution.”

-16 -

1. General-Purpose Programming on the GPU

shaders heavily depends on the vendor's GLSL compiler implementation. Naturally, this is not
really a problem, as the OpenGL API allows uploading of shaders written in assembler to the
graphics card. Thus, a developer, who wants to avoid driver-specific differences, may still em-
ploy a GLSL compiler from an external, vendor independent library.

I . | .
Applicaion |7 OPRCOL | m GpmRe [S
I
}i] Graphics Driver |
-» GLSL Code ‘,,,,,,V ,,,,,,
Shader Code ! GLSL 3
— Datal/O , Compiler .

Figure II.4: Involved software and hardware layers when using GLSL.

1.3.3. HLSL

The DirectX pendant to GLSL is the High Level Shading Language (HLSL) that has been avail-
able with DirectX 9, which was released in December 2002. Being designed after similar design
concepts, HLSL does not differ greatly from GLSL on a syntactical as well as on a semantic level.
Additionally, HLSL shaders are — like GLSL shaders — no stand-alone programs, and thus require
an auxiliary program that uses DirectX or, to be more precise, Direct3D. Besides the distinct
runtime environments in which HLSL and GLSL shaders are employed, the main difference
between the two languages is that, instead of being located in the graphics card driver, the
HLSL compiler is part of the Direct3D library. As a consequence, driver-dependent differences in
the generated shader programs cannot occur. Similar to GLSL, it is possible to compile new
shaders during runtime without the need to recompile the main application. In contrast to
GLSL, the Direct3D API also allows to only compile a HLSL shader and upload it manually to
the GPU later on (see Figure I1.5), whereas the HLSL compiler only generates DirectX pixel and
vertex shaders. So, if a developer does not want to rely on the Direct3D compiler, the developer
can also make use of an external compiler. However, this will soon no longer be possible, be-
cause the upcoming Direct3D 10 API will only accept shaders written in HLSL [21]. Neverthe-
less, HLSL is nowadays well established and mainly used in computer games to implement visu-
al effects.

Application 3 Direct3D 3 GraPhics 5 < Graphics
- ’: Interface :<—> Driver Hardware
1:] Direct3D Library N
~» HLSL Code \‘”””””1‘
Shader Code : HLSL !
“» Data /O | Compiler

Figure I1.5: Interaction between the host application and the HLSL compiler.

-17-

Chapter II - Background

1.3.4. Cg

In June 2002, NVIDIA has officially released C for graphics (Cg) that has been developed con-
currently to GLSL and HLSL. The key design decision was to create a general-purpose language
rather than a domain-specific language like the RenderMan Shading Language [30]. One reason
for designing a general-purpose language was to make the runtime costs of the operations un-
derstandable. This design concept would be infeasible with operations that abstract some kind
of mechanism on a high abstraction level, as it would have been introduced in a domain-specif-
ic language. Furthermore, the Cg developers wanted to create a language that makes it possible
to use the GPU for non-shading computations. As C manages to achieve performance and port-
ability at the same time, the Cg development team took syntax, semantic and philosophy of C as
basis for the Cg language specification. Besides extensions and modifications to C that are ne-
cessary to fully exploit the underlying GPU architecture, Cg introduces certain language con-
structs of C** or Java (e.g., constructors), just as GLSL.

Thus, Cg is not very different from GLSL or HLSL from a syntactical and semantic point of view.
Like GLSL and HLSL shaders, Cg shaders can be compiled during the runtime of an auxiliary
application, which is a prerequisite before any Cg shader can be executed at all. It is additiona-
lly possible to only compile a Cg shader and upload the compiled shader manually to the graph-
ics card, as Figure I1.6 demonstrates.

Aoplication Direct3D or OpenGL Graphics Graphics
PP > Interface > Driver <—» Hardware
| I }:] Cg Runtime
o | A IREEELEEEEES -» Cg Code
| |
} Cg ! } Cg ! Shader Code
1 Compiler | ' Runtime |
| H | I —» Data I/O

Figure II.6: Interplay between the application and the Cg runtime.

It turns out that Cg is one of the first — if not the first — graphics API independent shading pro-
gramming languages, because it provides a Direct3D and an OpenGL interface as well. To sup-
port both graphics libraries, the Cg compiler is able to generate both DirectX and OpenGL pixel
and vertex shaders. The Cg compiler supports the OpenGL pixel shader types that are defined in
ARB fragment program, NV_fragment program and NV _fragment program2 and OpenGL ver-
tex shaders that are defined in ARB vertex program and NV vertex program. This versatility
makes Cg the language of choice for game developers who want to implement graphical effects
that are guaranteed to run on every platform. Unsurprisingly, Cg is nowadays widely spread.

1.3.5. Sh

Sh was part of the research project SMASH that was dedicated to investigate the hardware fea-
tures as well as the programmability of GPUs. The project comprised two parts, which was on
the one hand Sh, and the GPU simulator Sm on the other hand. Instead of designing a new
graphics programming language, the researchers invented a metalanguage that is completely
embedded in C**. By means of the GPU simulator Sm, the team around Michael D. McCool
demonstrated the feasibility of this approach and claimed that it can be easily adopted to Dir-
ect3D and OpenGL [31]. Because the name SMASH already belonged to a related project, this
name was no longer used and the project was eventually split up into its two parts Sh and Sm,
of which Sm has not been developed any further. The first official Sh version that supported
Direct3D and OpenGL was eventually available in July 2003.

-18 -

1. General-Purpose Programming on the GPU

When making use of Sh, a developer is able to program the graphics hardware using a single
programming language (C** in this context), instead of writing GPU programs in a language
different to the application language. As Sh shaders can share variables with the main program,
parameter binding code that associates program variables with shader variables is no longer ne-
cessary. Thus, less code is necessary to drive a shader program. In contrast to other graphics
programming languages, Sh additionally unburdens the developer from texture handling, which
further decreases the amount of necessary code. Comparable to GLSL, HLSL and Cg, shaders
can be easily created on the fly in the main application, whereas it is not necessary to create
some kind of textual representation. Unfortunately, this also implies that is not possible to load
Sh shader code from a file or some other kind of medium during runtime, as the shader code is
part of the main program. However, because less code is required, and a developer no longer
has to care about several languages and the interaction between them, writing C** embedded
shaders finally reduces the overall complexity of an application and might additionally ease its
debugging.

++
C+* and o+ o L, sh
embedded » Compiler > Application [> Runtime
Sh Code p
A
-» Sh Code Y
Shader Code Graphics Graphics OpenGL
—» DataI/O Hardware Driver Interface

Figure II.7: Compilation and interaction of an Sh shader program.

Sh is a cross-platform graphics programming language that currently comes with both an
OpenGL and a CPU back end (see Figure I1.7), besides being available on Windows, Linux and
Mac OS X. When using the GPU, Sh internally generates either OpenGL pixel and vertex shaders
(only ARB_fragment program and ARB_ vertex program) or GLSL shaders. As GPUs have be-
come a promising target for general-purpose computation, the Sh development team aims for
Sh to be a programming language that is suitable for any kind of computation on the GPU, as
seen in Figure II.8 that shows an example Sh shader that adds two vectors. However, Sh is
mainly used in shader programming.

// main code
int main (int argc, char **argv)
{
// embedded shader code
ShProgram program = SH_BEGIN_ PROGRAM ()
{
ShInputAttriblf u, v;
ShOutputAttriblf w;
w = utv;
} SH_END;

// init shader
shCompile (program);
ShChannel<ShAttriblf> u(256), v(256), w(256);

// execute shader
w = program << u << V;

}

Figure I1.8: Sh vector addition implementation.

-19-

Chapter II - Background

1.3.6. Brook for GPUs

Brook for GPUs has emerged from the Brook language specification that has been designed as a
programming language for the Merrimac streaming supercomputer [32]. A version of Brook for
GPUs was already available in December 2003, before it has been presented to the public in Au-
gust 2004 [33]. In the following, I will simply use Brook to stand representatively for Brook for
GPUs.

Implementing a subset from the original language specification, Brook completely hides the un-
derlying graphics hardware from the user, abstracting the GPU as a streaming coprocessor. This
approach is feasible, because the GPU architecture offers certain mechanisms that are also
found in stream programming. In contrast to other programming techniques, the stream pro-
gramming model abstracts data as streams, which are sequences of records that require similar
processing, whereas kernels represent functions that are applied to each element of a stream.
The resemblance between streaming processors and vertex or pixel processors on the GPU is
striking. Like a pixel processor that applies a pixel shader on each pixel of a texture, writing the
output pixel to the frame buffer, a streaming processor executes a kernel over all elements of an
input stream, while storing the results into an appropriate output stream.

++
Brooli Brook ¢ Cc** S
and C Compiler Wrapper Compiler Application
Code P P

A

O Code/Application

o Cg C Brook
D Compiler/Library Intermediate Com giler Runtime
—# Input/OQutput Code P Library

Figure I1.9: Brook compilation process.

Like Sh, Brook is a platform independent programming language that provides a Direct3D,
OpenGL and a pure CPU back end and offers a seamless integration of shader and C** code. In
contrast to Sh, Brook introduces stream programming language constructs, such as kernels and
streams, to the C** programming language. As these language extensions are normally not un-
derstood by a C** compiler, a Brook program has first to be compiled with a special compiler,
such as the Brook compiler brcc. Requiring yet another compiler, brec is a source to source com-
piler that translates Brook code into pure C** code. However, before generating the final C**
wrapper code, brce produces intermediate Cg code that is compiled with the Cg compiler (see
Figure 11.9) that happens to create inefficient code under certain circumstances. For instance,
Purcell et al. have experienced that a Cg implementation of an algorithm used 52 instructions,
although it was possible to implement it using only 19 instructions [34]. However, optimising
the generated assembler code heavily, the graphics driver might be able to diminish this draw-
back.

It turns out that Brook does not share all advantages of Sh. As the vector addition example in
Figure I1.10 clearly shows, Brook does not completely hide the texture handling from the user.
Besides the fact that textures have to be declared explicitly, it is additionally not possible to ac-
cess a once declared texture directly. Instead the user has to initialise textures using auxiliary
variables that contain the initial data, which might confuse the user on the first look.

In contrast to other graphics programming languages, Brook is intended only to be employed in
general-purpose programming. Being currently under active development, Brook has been used
to realise the fast Fourier transform algorithm or a ray tracer among several other possible ap-
plications.

-20 -

1. General-Purpose Programming on the GPU

// shader code
kernel void add (float u<>, float v<>, out float w<>)
{

w = utv;

}

// main code
int main (int argc, char **argv)
{

// init vectors

float U[256], V[256], W[256];

// init shader

float u<256>, v<256>, w<256>;
streamRead (u, U);

streamRead (v, V);

// execute shader
add (u, v, w);

// download data
streamWrite (w, W);

}

Figure I1.10: Vector addition in Brook.

1.3.7. CGiS

CGiS" is one of the most recent high-level graphics programming language that is currently be-
ing developed at the University of the Saarland. A description of the CGiS programming lan-
guage has been officially introduced in November 2004 [35].

Like Brook, CGiS completely hides the underlying hardware and additionally does not require
the user to know about the hardware's details. Yet, it might help to understand the capabilities
and restrictions of CGiS more easily, if a developer knows what the GPU can and what it cannot
do. Because there are no e.g., inverse trigonometrical functions available, or it is not possible at
all to realise pointer operations (see Section 1.3.2), a user might become confused at first, when
the user finds these features missirg.

Similar to most languages that this chapter presents, C forms the basis of the CGiS language
specification, whereas certain aspects of Pascal were also adopted. In contrast to Brook that
abstracts the GPU as a streaming coprocessor and consequently requires a developer to think in
terms of stream programming, CGiS abstracts the GPU as data-parallel hardware in a more
general fashion. Furthermore, CGiS differs from Sh or Brook, as code that will be executed on
the GPU and code that controls the execution on the GPU is strictly separated from the main
application code. Just as pure shading languages (e.g., HLSL) are designed only to express the
properties of some kind of material, CGiS is only used to describe the algorithm instead of the
code that supplies the algorithm with data. This design concept was preferred over all others,
because it helps the user to realise what exactly is going to be executed on the GPU.

Besides the three base types bool, int and float that are also part of C, CGiS introduces the new
base type half, which is a floating point type with half the precision of a float, vectors of base
types with a maximum width of four elements (e.g., bool2, int3 and float4) and one- or two-di-
mensional streams of structures with predefined or arbitrary™ size. Custom data types can addi-

13 CGiS abbreviates Computer Graphics in Scientific programming.
14 In this context, arbitrary means being defined at runtime.

-21 -

Chapter II - Background

tionally be defined with the typedef statement. Analogously to GLSL, CGiS keeps all C oper-
ators, except bitwise and pointer operators of C for the same reasons mentioned in Section
1.3.2, and introduces new operators that are specific for the GPU instruction set, such as cross
and dot product, texture lookup, mask and swizzle. For efficiency reasons, CGiS additionally of-
fers special syntactical constructs for primitive vector and matrix arithmetic.

{

}

PROGRAM add; #include “add.h”

INTERFACE int main (int argc, char **argv)
{

extern in float U< _>; // init vectors

extern in float V< _>; float *U, *V, *W;

extern out float W< >;

CODE // upload data to gpu
setup_sizes_add (256, 256, 256);
function add (in float u, in float v, out float w) setup _init add ();
{ set _data add (STREAM U, U);
w = utv; set_data_add (STREAM V, V);
} setup_data_add ();
CONTROL // execute shader

forall (float u in U; float v in V; float w in W)

add (u, v, w); get_data add (STREAM W, W);

execute_add ();

// download data from gpu

}

Figure I1.11: CGiS program that adds two vectors. Figure II.12: Directing the CGiS code.

As depicted by Figure I1.11, to implement an algorithm in CGiS, it has to be split up into three
sections:

Data types, streams and variables are declared in the INTERFACE section. A variable can
be marked as either external (accessible by the user) or internal (only accessible within
the algorithm). When declaring an external variable, the user must additionally specify
its flow direction that can either be in, to indicate that the variable can only be read,
out, to only allow the variable to be written, or inout, to enable the variable to be read
and written as well. The flow direction of internal variables is implicitly inout. The same
rules apply to streams, whereas the user also has to specify the stream's dimensionality
and the width of each dimension. Any dimension of a stream may also have an arbitrary
width, which is indicated with an underscore (see Figure I1.11). However, before any
computation can occur, the sizes of each stream must be defined at runtime.

The CODE section is a sequence of functions that may operate in parallel on single data
elements. In contrast to C, functions do not have a return value. Instead, each function
parameter has a defined flow direction that can be either in, out or inout, which enables
functions to have multiple return values at once'. As neither indirect nor direct recur-
sion is permitted, CGiS does not support function forward declarations. However, a
function may still call another function as long as the callee has been declared previ-

15 The number of available function parameters with an out flow is determined by the number of com-
ponents of the function parameters and is indirectly restricted by the maximum amount of textures a
shader may render into. As a texture consists of pixels that are quadripartite float vectors, a GPU
that supports only one output texture would restrict the available output parameters to either four
float, two float2 or one float and one float3 parameter and so on. Recent GPUs support rendering
into four textures.

-22 -

1. General-Purpose Programming on the GPU

ously. Each function can be understood as a shader template that will be used to create
the final shader code. If e.g., a function is only called from another function, it will
automatically be inlined, which finally results in a single function containing the code of
the involved functions.

« The CONTROL section specifies, how the parallel computation has to take places. This
section comprises at least one forall loop that may call any function that is contained in
the CODE section. The sequence of the forall loops, specified in the CONTROL section,
initiates the computation on the GPU, whereas each forall loop stands representatively
for what is to be computed. Besides specifying the computation, the forall loops determ-
ine constraints involving the declared streams.

In Figure II.11, the forall loop takes one element out of the three declared streams. To
ensure that no element is selected twice, the arrays U, V and W must have the same
sizes. Thus, setting distinct sizes for these arrays, will result either in a compile time or
runtime exception, depending on whether the sizes are defined at compile time or dur-
ing runtime.

As CGiS programs are not stand-alone applications, an auxiliary program is required to direct a
CGiS program. Figure I1.12 shows how the generated shader is initialised, before it can be ex-
ecuted and the resulting data can finally be downloaded from the frame buffer into the com-
puter's main memory.

The CGiS compiler cgisc is a source to source compiler that translates CGiS code to C** wrapper
code, which encapsulates the generated shader code. In contrast to the Brook compiler, cgisc
does not rely on an external compiler. Instead, the CGiS compiler generates shader code dir-
ectly, which gives cgisc full control over the complete algorithm. Figure II.13 shows, how the
compilation process actually takes place. Currently, the CGiS runtime library only supports an
OpenGL back end, which is sufficient, because OpenGL is available for multiple platforms. Until
now, there are no plans to integrate a Direct3D interface in the near future. It is unsure whether
there will be such an attempt at all, because the upcoming Direct3D API will only accept
shaders written in HLSL (see Section 1.3.3). Generating high-level shader code contradicts the
CGiS team's design decision not to rely on external compilers, because this would diminish the

control over the generated GPU assembler code.
CGiS GPU or SEE
Compiler Code

CGiS C*+ C*+
Runtime Wrapper Directing
Library Code Code

O Code/Application

. . ++
D Compiler/Library Cor(1:1 iler Application
—» Input/Output P

Figure I1.13: CGiS compilation process.

-23 -

Chapter II - Background

Altogether, CGiS is an interesting language that supports general-purpose programming on a
high level of abstraction that enables a developer to easily exploit the vast computational re-
sources of recent GPUs. CGiS even allows a developer to exploit the power of SSE capable
processors, because the CGiS compiler is also capable of generating SSE code. The compiler has
unfortunately not yet been published, so CGiS is more or less unknown to the general public.

-24-

2. Compilers

2. Compilers

Since the beginning of computer programming, compilers have been indispensable tools that
ease and speed up the development of any software project. Although implementing certain al-
gorithms for efficiency reasons, realising whole applications or operating systems completely in
an assembly language would be nowadays unthinkable.

The following two sections describe the general design of a compiler, according to the design
presented in [36], and compare this design to the structure of the CGiS compiler. Section 2.2
further reveals the internals of cgisc, showing how programs are internally represented, how
the code generation takes place, and where exactly retargetable pattern matchers can be em-
ployed to improve the code generation and optimisation process.

2.1. General Design

In general, two disjoint modules constitute a compiler, as seen in Figure I1.14. On the one hand,
the front end reads the input data, creates an internal representation out of the input program
and performs several analyses as well as platform-independent optimisations, whereas on the
other hand the back end is responsible for the target code generation and optimisation using the
input program representation that has been previously created in the compiler's front end. Both
modules themselves further comprise several interdependent submodules.

Lexical Target Code Code
Source Code > . Independent . A
Analysis Ontimisati Generation Optimisation
ptimisation

y
(O Module Syntactical Semantic Target
D Code/Application Analysis Analysis Program

—» Input/Output Front End

Figure I1.14: A very general compiler structure.

Before the internal representation of the input program is passed to the back end, three ana-
lyses have to take place in the front end:

+ The lexical analysis receives the input program as a sequence of characters and trans-
form it into a sequence of terminal symbols of the source language. Considering the C
programming language, typical terminal symbols would be separators (e.g., ;, { or }),
operators (e.g., == or +=) or reserved keywords (typedef, struct, etc.) amongst oth-
ers.

+ The syntactical analysis checks whether the input program is syntactically well-formed
while converting the sequence of terminal characters into an abstract representation of
the input program. The input program is commonly represented as a syntax tree or a
call graph.

« Processing the input program representation, the semantic analysis determines whether
certain language constraints have been violated that cannot be verified without context
sensitive information. While introducing context sensitive data to the internal program
representation, this analysis usually checks for type violations (e.g., Java does not allow
the assignment of an integer to a boolean variable), whether a used variable has been
declared beforehand or whether a variable has been declared multiple times.

-25 .

Chapter II - Background

+ Additionally, certain platform-independent optimisations can be performed before the fi-
nal internal representation is passed to the back end. These optimisations include e.g.,
the computation of expressions, whose values are known at compile time (constant
propagation), or the removal of dead code (dead code elimination). Although not being
an analysis, this step is understood as a part of the front end, as the applied optimisat-
ions are independent from the target architecture andthe target language as well.

Occasionally, submodules that cannot be clearly assigned to either front end or back end
are summed up in an intermediate module called middle end.

If an error occurs during any of the three analyses, the compiler stops, reporting the most reas-
onable cause(s). As stated in [36], the front end, and thus any error that may occur during this
processing phase, is ideally not related to the target architecture or target language. This strict
separation is however not always possible, especially when the compiler comprises multiple
back ends. Due to the differences between the supported GPUs, this problem inevitably applies
to the CGiS compiler, as discussed in Section 2.2.

If the front end finishes otherwise without errors, the processing continues in the back end,
where two final steps have to be performed. First, the code generator translates the abstract
representation of the input program into the target language. During that process the generator
might have to cope with the register allocation'® and the code selection'” that both depend on
the target language. It is e.g., very unlikely that a source to source compiler will have to handle
register allocation. Second, the code optimiser tries to improve the generated code by replacing
certain instruction sequences with more efficient sequences or by reordering instructions (in-
struction scheduling). To perform these optimisations, the optimiser generally takes only a look
at parts of the program and is thus only capable of computing local optima. Whenever an op-
timisation is applied, certain computations that were executed during the code generation usu-
ally have to be run again. If e.g., some instructions have been removed, the previously com-
puted information about required registers might be outdated and the target program could be
implement using fewer registers. As a matter of fact, code generation and optimisation are often
interconnected submodules, because they normally cannot process the input program in a
single pass. This problem is known as the phase ordering problem.

When back end has eventually finished processing, the compilation process ends, and the target
program is finally available.

16 The register allocation tries to minimise the usage of memory cells by assigning registers to variables
such that the available registers are used efficiently, whereas as few memory accesses as possible
have to be performed.

17 Most architectures offer multiple equivalent instruction sequences for the same computation. As
these instruction sequences may however differ in their execution time, depending on the actual
context, the code selection has to select the most reasonable sequences.

-26 -

2. Compilers

2.2. CGiS Compiler Design

The following two sections discuss how the CGiS compiler internally represents any input pro-
gram and how the compilation process actually takes place, with respect to code generation and
optimisation. As described in Section 1.3.7, a CGiS source file is separated into the three sec-
tions INTERFACE, CODE and CONTROL. Although cgisc is also capable of generating SSE code,
only the generation of GPU code is of further interest for the remainder ofthis chapter.

2.2.1. Internal Representation

The CGiS compiler internally represents each function as a basic block control flow graph. A ba-
sic block is a sequential, directed, branch-free graph of maximum length, whereas each node
represents an instruction of the program. To ensure that the basic block can only be entered
through the first node and only be exited through the last node, every node except the first and
the last must have an in-degree and an out-degree of 1. Common instructions that begin a basic
block are procedure entry points or targets of jumps or branches, whereas branching instruc-
tions or return statements usually end a basic block.

Each instruction in cgisc has at least one target and either one, two or three operands. To be
compatible with the program analysis toolkit PAG [37], each control flow graph contains two
mandatory basic blocks, of which the first one initialises all function parameters that have an in
flow, whereas the second one writes the final results to all function parameters with an out
flow. Figure I1.15 shows how the CGiS compiler internally represents the add function of the
vector addition example (see Figure I1.11).

add D Instruction
D Basic Block

block: 1
. — Control Flow
in<u>
block: 2 block: 3
in<v> > w = utv » out<w> F

Figure II.15: Internal representation of a CGiS function.

2.2.2. Compiler Structure

As depicted by Figure I1.16, the CGiS compiler implements the general compiler design, where-
as it extends both front and back end with additional intermediate phases that are required for
the GPU code generation.

. L . . . Code .
CGiS Code Parsing If-Conversion @—» Splitting
O Module Classic
D Code/Application Optimisation

—» Input/Output Front End

Code
Optimisation

Texture
Allocation

Y
C++

Wrapper
Code

Figure I1.16: Internal structure of the CGiS compiler.

-27-

Chapter II - Background

Before the code generation commences, the frontend processes an input program as follows:

« At first, the parser generates an internal representation of the program, while performi-
ng the lexical, the syntactical as well as the semantic analysis. At this point, it is already
possible that the compiler rejects an input program due to incapabilities of the target ar-
chitecture. For instance, if the CGiS compiler detects a loop, cgisc rejects the input pro-
gram, if the target GPU does not support loops.

+ In the next phase, the CGiS compiler inlines all function calls, if the target architecture
does not support subroutines (e.g., NV30).

« Afterwards, cgisc employs classic optimisations that correspond to the target independe-
nt optimisations presented in Section 2.1.

+ Although certain GPUs do not support branching (e.g., NV30), it is still possible to im-
plement branching on these GPUs, if conditional assignments can be realised. This if-
conversion additionally requires the CGiS compiler to transform the control flow graph
of every function, such that no branches occur. This is done by executing the code of
each branch, whereas the final results are first assigned to temporary variables. The con-
ditions decide afterwards which values have to be assigned to the target variables. By
definition, this transformation will result in a large basic block that contains the whole
function body. See Figure I1.17 for an example.

‘ b=x>0 ‘

condition: b ‘

o1

If-Conversion

P e, | T
: |

v ‘ x = b?_x tmpO:x ‘

‘ x =1 ‘ ‘ x =0 ‘
‘ _x tmpl = 0 ‘

D Instruction ‘
DBasic Block ‘ x = !b?_x tmpl:x ‘

— Control Flow

Figure I1.17: Applied if-conversion.

If the front end has finished its work on the internal representation of the input program, the
back end can finally begin generating the target code. Besides having to determine the number
of required registers, the compiler also has to cope with two other problems. On the one hand,
if a generated shader comprises too many instructions, cgisc must split it up into several inter-
dependent shaders (splitting), because shaders may not be arbitrarily long, as mentioned previ-
ously in Section 1.2. The splitting phase might additionally have to introduce new intermediate
streams to cache the results of the interdependent shaders. On the other hand, the compiler has
to determine how many textures are necessary to store the declared and intermediate streams
(texture allocation). It turns out that the phase ordering problem is also encountered in the
CGiS compiler, as both phases depend on each other. In fact both phases are executed at the
same time. Additionally, the compiler might have to rerun the previous phases, as the code op-
timisation possibly reduces the number of instructions in a shader. However that may be, a de-
tailed discussion of the phase ordering problem is beyond the scope of this work.

After the back end has terminated, the compiler wraps the generated GPU code in a C** header
and source file that provide the infrastructure forexecuting the compiled program on the GPU.

-28 -

2. Compilers

2.2.3. Code Generation

As described in Section 2.2.1, every function is internally represented as a control flow graph
that consists of basic blocks, whereas a basic block is a branch-free sequence of instructions. An
instruction is an instance of a class that represents e.g., an unary or a binary operation. Instead
of standing representatively for actual operations, the instruction objects are also responsible
for the code generation, so they know how to generate corresponding code for any target archi-
tecture. Independent from the target GPU, the compiler processes the function's basic blocks
and the contained instructions one after another by invoking the code generation function to
generate the target code, while storing the results in the corresponding target basic block. This
code selection method is completely deterministic, as the invoked instruction objects have no
knowledge about their surroundings, and thus, there is always exactly one fitting instruction
target code sequence. Although this implementation keeps the code generation as simple as
possible, it unfortunately leads to suboptimal code and further has the disadvantage that the
differences between the supported GPUs are mixed inside the code, which makes it the more
unmaintainable the more different target architectures are supported.

Some GPU architectures (e.g., NV30 or A300) do not feature a division operator. Instead they
provide the RCP (reciprocal) instruction that computes the multiplicative inverse of its operand.
Thus, other than multiplying the nominator with the multiplicative inverse of the denominator,
there is no other way of dividing two numbers on these architectures. Additionally, it is not pos-
sible to compute the square root directly, because recent GPUs only offer the RSQ (reciprocal
square root) instruction that calculates the multiplicative inverse of the square root of a non-
negative number. These peculiarities together with the unawareness of the instruction objects
about their surroundings cause the CGiS compiler to generate less efficient code under certain
circumstances, as Figure 11.18 demonstrates.

Source Code: Internal Representation: Generated Target Code: Optimal Target Code:

z = x/sqrt(y); ‘
. _tmp = sqrt(y) RSQ _tmp,y RSQ _tmp,y

B Associated Instructions
D Basic Block

—» Control Flow

Figure II.18: Generating inefficient code.

To implement the expression z = x/sqrt(y), cgisc generates four instructions, although it is
possible to realise this expression using only two instructions. The compiler internally repres-
ents the given instruction using an unary operation that stores the square root of y in some tem-
porary variable tmp and an binary operation that assigns the value of x divided by _tmp to z.
During the code generation, the unary operation does not know that its result is used as denom-
inator in the next division operation. Thus, it generates two instructions (marked orange) to
compute the square root of y to store it in the temporary variable tmp. Due to the lack of a di-
vision operator, the binary operation has to generate code (marked blue) that first computes the
multiplicative inverse of tmp using the RCP instruction and that afterwards assigns the value of
x multiplied with _tmp to z. However, as the second RCP instruction reverses the effect of the
previous one, both RCP instructions can be omitted, which results in the optimal implementa-
tion of the given expression.

-29.-

Chapter II - Background

Instead of optimising the inefficient code later on, the CGiS compiler could be improved by re-
placing the code generation process with a more sophisticated approach that, on the one hand,
allows the developer to specify the code generator's behaviour depending on the target architec
ture, and that takes the surroundings of an instruction into account to avoid problems like the
one described above, on the other hand.

As a solution, the present work proposes the pattern matcher generator tpmg (see Chapter IV)
that is capable of generating retargetable pattern matchers that operate on basic blocks, so that
they can replace the existing code generator and are even able to perform certain optimisations.
The generated pattern matchers can be employed in any compiler that internally represents
programs as basic block control flow graphs.

- 30 -

III. Theory

II1. Theory

In the first section, this chapter introduces the general idea behind the pattern matchers the
pattern matcher generator tpmg creates (see Chapter IV). The second section introduces the
used mathematical notation and formally describes the theoretical concepts that realise retar-
getable pattern matchers. Discussing the formal description of a pattern matcher, demonstrating
the functioning of a pattern matcher and analysing the (worst-case) runtime of the pattern
matching process, third section concludes this chapter.

1. General Idea

A retargetable pattern matcher combines two disjoint notions, as a closer look at the term retar-
getable pattern matcher reveals. On the one hand, a pattern matcher identifies certain patterns
and replaces them appropriately. In this context, a rule defines a pattern to identify and how it
should be replaced. On the other hand, the pattern matcher is retargetable. So, a pattern match-
er is able to process the same input differently, depending on the rules to use; the target plat-
form to process the input for. Rules that are specific to a certain target constitute a profile.

It turns out that — at least in this context — retargetable pattern matchers have a quite simple
structure. A retargetable pattern matcher comprises several profiles appropriate to the targets
the pattern matcher should support, whereas a profile contains several rules that specify how to
process the input. However, apart from the structure of retargetable pattern matchers, the most
interesting question is how to formally describe profiles and rules.

The formal description of a profile is not challenging, because profiles are just a finite sets of
rules (see Section 3.3). So, the rules are the most interesting aspect of pattern matchers.
Roughly speaking, a rule comprises a search pattern and a replace pattern that depends on the
search pattern in general (see Section 3.1 and 3.2 for more details about patterns and rules).
The rule's search pattern is a compact representation of a finite state automaton that matches
certain input words. However, the standard finite state automaton model and its functioning
are not quite sufficient torealise the desired matchingbehaviour, as Section 2.2 shows.

In the following, I will use the term basic block as synonym for the term input word, because the
input words of a pattern matcher are basic blocks in this context.

Discussing why the common finite state automaton model is insufficient for this approach, Sec-
tion 2.3 introduces a special kind of finite state automaton that differs from the standard finite
state automaton in the following points (amongst other things):

« To enable an automaton to decide as early as possible whether it should reject an input
word, transitions are guarded by a side condition. This modification of the automaton
model has a positive side effect on the overall runtime of the pattern matcher

« Because a pattern matcher is supposed to process an input word using several automata,
it makes sense to redefine the acceptance behaviour such that an automaton accepts an
input word, even if the automaton only has consumed a prefix of the input word and
the automaton's current state is a final state. This different acceptance behaviour en-
ables the pattern matcher to combine multiple automata.

+ Because the different acceptance behaviour may cause an automaton to reach several
accepting states for the same input word, matching an input word requires some kind of
memory to keep track of all those accepting states, so that the pattern matcher is able to
choose the most interesting of them (e.g., the state that consumed most of the input

symbols).

-31 -

Chapter III - Theory

2. Theoretical Background

2.1. Basics
The following notation is used throughout this chapter:

+ For the remainder of this chapter, 3 denotes an arbitrary alphabet, which is a finite,
non-empty set of symbols, whereas IN denotes the set of natural numbers, including 0.

« Letn € N. Iff w = wiw,..w,, whereas Vi € Nwith1 <i < n thenw; € 3, w is a word
over Y of length n. The term w[i] denotes the i-th symbol w;.

« The symbol € denotes the empty word, whereas V3. e ¢ 3.

« Ifl1<i<j<n,wlij] =w..w;is a subword of w. For any other i and j, w[i:j] = ¢.
+ Thelength n € N of a word w over X is written as |w| = n.

+ The set of all words over Y is 3* := {w | w is a word over X A |w]| > O}.

« The set of all non-empty words over X is X* := {w | wis a word over X A |w| = 1}. It
obviously holds that * = ¥* U {¢}.

« Letv,we X*. Ifv =v..v,and w = w;..wy,, the concatenation of the words v and w is
VW = YW = Vi..VaWi..Wn. The empty word is the identity element with respect to the
concatenation operator, so e.w = W.e = w.

« Letwe X* Iff 3x, y € 2™, so that w = xy, then x is a prefix and y is a suffix of w.

Any subset of 3 is a formal language over 3 with the following operations:
e LiULy={w | we€L; VwEe Ly} is the union of the formal languages L; and L..

e LiL;={vw | v € L; A w € L} denotes the concatenation of the formal languages L,
and L.

+ The closure of a formal language L is defined asL* = | {wi..w, | w;€ L, 1 <i < n}.

n=0
Additionally, the following abbreviations are used:

« ThesetY ={xy|x,y € 2*} Forany w = xy € X*, the word x.y € Y represents the
progress of an automaton that has already processed the prefix x and that has not yet
handled the suffixy. The next input symbol to consume is then y[0], if y # ¢.

2.2. Finite State Automaton

Processing a basic block, a pattern matcher has to identify instructions patterns that are to be
replaced with appropriate sequences of instructions for the target architecture. These instruc-
tion patterns constitute nothing else but a regular language. Because finite state automata re-
cognise regular languages, finite state automata form the basis of every pattern matcher. The
following definitions introduce regularlanguages and finite state automata.

As regular expressions are commonly used for describing regular languages, they could also be
used to describe the instruction patterns that a pattern matcher should replace. However, in-
stead of regular expressions, I will introduce a domain-specific method to describe instruction
patterns in Section 3.1.

-32 -

2. Theoretical Background

Definition 2.2.1 (Regular Language)
The regular languages over X are inductively defined as follows:

« The empty set is a regular language over 2.
« VYae X {a} is a regular language over .
- If L; and L, are regular languages over X, then L; U L, LiL, and L;* are also regular

languages over X.

Example 2.2.2
Table III.1 shows some regular languages and words they contain.

Regular Language Contained Words
{a, b, c} a,b,c
{a, b}* &, a, b, aa, ab, ba, bb, ...
{a}* U {b}* &, a, b, aa, bb, aaa, bbb, ...
{ab}*{a} a, aba, ababa, ...

Table II1. 1: Example regular languages.

Definition 2.2.3 (Finite State Automaton)
A (non-deterministic) finite state automaton (NFA) is a quintuple (2, S, so, 8, F), where:

- X is the input alphabet,

« Sis the non-empty set of states,

+ o € S is the initial state,

« 0SS X (2U{e}) x Sis the transition relation,
« F c Sis the set of final states.

A finite state automaton is deterministic, iff there existno s, t € S, so that (s, &, t) € § and for
any s € S there existno t;, t € Sanda € 3, sothat (s, a, t;) € § A (s,a,t2) €5 A t; # tz. The
same effect can be gained, if § is required to be a transition function of the type S X 3 — S.

To determine whether an NFA accepts an input word, the notions configuration and step are re-
quired. When processing an input word, the configuration represents the current situation, in
which the automaton resides, whereas a step transfers a configuration into another when the
automaton consumes the next input symbol.

Definition 2.2.4 (Configuration, Step, Acceptance)

Let N = (2, S, so, 8, F) be an NFA. A pair (s, w) with s € S and w € X* is a configuration of N,
whereas (so, w) is an initial configuration and (s, €) with sy € F, is an final configuration.

A configuration is transferred into another using the step relation =y < (S X 2*) X (S X X*).
The transition (s, aw) =y (t, w) is valid for anys, t € Sand a € 3 U {e}, iff (s, a, t) € 6.

Iff there exists a series of configurations (so, W) = ... =n (55, €) and s; € F, then N accepts the
word w € }*.

The set Ly = {w € J* | w is accepted by N} is the accepted language of N.

-33 -

Chapter III - Theory

Example 2.2.5

State Symbol Target State
s a t
s a u
t b s

Table II1.2: Transition relation of an NFA that accepts the language {ab}*{a}.

Let Y = {a, b} and N = (3, {s, t, u}, s, 8, {u}) be an NFA. The transition relation § is defined
such that N accepts the regular language {ab}*{a}. Showing the input symbol that is required
to reach a state from another, Table II1.2 displays &. Transitions other than those specified in the
table above are not allowed.

Because there exists the series of onfigurations (s, aba) =y (t, ba) = (s, a) =n (u, €), N accepts
the input word aba. The automaton ejects the input word abb, because no configuration series
beginning at (s, abb) ends with a final configuration. Only the following two configuration
series of configurations are possible:

« (s, abb) =y (t, bb) = (s, b). At this point, the automaton cannot proceed any further,
because there is no transition that originates in the states under the symbol b.

« (s, abb) =y (u, bb). Although N has reached the final state u, the automaton rejects the
input word, because the last element of the configuration series is not a final configurat-
ion.

The above automaton representation turns out to be unintuitive and confusing, especially if the
automaton to represent is pretty complex. Instead, finite state automata are commonly repres-
ented as state transition diagrams, which are finite, directed, edge-labelled graphs. To receive
the corresponding state transition diagram for any finite state automaton, simply interpret the
input alphabet 3 as available edge labels, the states of the automaton as vertices, every triple
(s, a, t) € 6 as an edge labelled with a between the vertices s and t and specially mark the ini-
tial vertex and the final vertices, so that they can be discerned from the others. Analogously, the
corresponding finite state automaton can be derived for any state transition diagram.

Example 2.2.6
Figure III.1 shows the corresponding state transition diagram for the NFA N of Example .5.

° a @ O Initial State
O State
b a © Final State

—» Transition
Figure III.1: State transition diagram for the NFA of Example .5.

-34-

2. Theoretical Background

2.3. Predicate Object Automaton

To process a basic block, it is preferable to use several small automata, each of which is special-
ised to a certain kind of problem, instead of a a single, monolithic automaton. By dividing the
matching problem into disjoint subproblems — a very common procedure in computer program-
ming — changes and additions can be more easily performed and it is likely that errors can be
tracked down faster than in the monolithic approach. However, finite state automata and their
method of processing an input word, as presented in Section 2.2, appear to be unsuitable for
this application for several reasons.

A closer look at an input word of a patter matcher reveals that every input symbol is in fact an
instance of the abstract representation of an instruction. The consequence is that — besides its
type — each symbol has additional properties, such as the target register and the operands of the
instructions. So, input symbols that have the same type, may still differ from each other. This
observation furthermore leads to the fact that a pattern matcher's input alphabet comprises (in-
struction) classes, of which the input symbols are instantiated. Because a class may be derived
from another one, certain input symbols belongs to multiple classes at once, as the following ex-
ample shows.

For the remainder of this chapter; > denotes an alphabet, of which each symbol denotes an in-
struction class.

Example 2.3.1

Let 2 = {Unary, Sqrt}, where the class Unary denotes a generic unary operation and the class
Sqrt represents a square root operation. The class Sqrt derives from the class Unary, because
the square root is an unary operator.

If the current input symbol a is an instance of the instruction class Sqrt, the symbol a obviously
belongs to the class Sgrt and to the the class Unary as well, because Sqrt derives from Unary.
Otherwise, if a is only an instance of Unary, a can only be assigned to the class Unary.

Note that this notion introduces a little type clash. The concepts introduced in Section 2.1 re-
quire that each symbol of a word over Y is contained in . But how can an instance of a class
be contained in a set of classes? To resolve this conflict, I redefine the €-operator such that — in
this context — a € X is equivalent to class(a) € 3, where class(a) denotes the class of which a is
an instance.

For this reason, the notion of a transition from state s to state t under the class a — remember
that the input alphabet now consists of instruction classes — has to be redefined such that the
automaton may take the transition whenever the automaton encounters an input symbol that is
an instance of the classa.

Additionally, it makes sense to guard transitions by side conditions to enable the automaton to
rule out false positives that the automaton would generated very likely, if it would not verify
certain properties of the input symbols. A typical side condition would check whether the target
register of an instruction is the operand of another instruction. These transition guards enable
the automaton to stop the matching as early as possible, which finally improves the processing
speed and reduces the amount required memory.

Besides the limited transition relation, there are yet other reasons that render the finite state
automaton model unsuitable to implement a pattern matcher. To enable a pattern matcher to
process an input basic block using multiple automata, the automata must have a different ac-
ceptance behaviour that causes the automata to accept an input word, even if only a prefix of

-35 .

Chapter III - Theory

the input word has been consumed. This less strict acceptance behaviour might cause such an
automaton to accept the same input would differently, having consumed different prefixes of
the input word. This behaviour is desired, as any of these prefixes can be taken taken as vant-
age point to generate the most desirable (in general most efficient) target instruction sequence.
To compute all possible prefixes, the automata must explore all possible matches (in parallel).
Besides the prefixes, the automata additionally must provide information under which input
symbol a state has been reached, because the properties of the input symbol — in combination
with the target state — may have an extra influence on the code that the pattern matcher gener-
ates. If e.g., a pattern matcher compiles an addition instruction, the pattern matcher has to
know about its target register and its operands. Thus, the automation that matches the addition
instruction has to keep the instance of this instruction, so that the pattern matcher can extract
the necessary information.

The following definition introduces the predicate object automaton that features the properties
mentioned above.

Definition 2.3.2 (Predicate Object Automaton)
Let B = {true, false} be the set of boolean constants, and Predicate be a finite set of boolean
predicate functions of the type N X (N X S — 3*) — B,
A predicate object automaton (POA)* is a quintuple (X, S, so, §, F), where:
2 is the finite, non-empty input alphabet,
« S is the non-empty set of states,
+ o € S is the initial state,
+ 6 S S X ((X X Predicate) U {¢, skip}) X S is the transition relation,

. F < Sis the set of final states.

In a POA, boolean predicate functions guard the transitions the automaton takes. So, before a
POA may consume the input symbol a and take the transition (s, (b, q), t), the automaton has
to check whether a is an instance of the class b and whether the function q evaluates to true.
Additionally, the new automaton model introduces skip-transitions, whose purpose is to omit
the current input symbol such that the automaton does not consume it. Just like e-transitions,
skip-transitions are not guarded by boolean predicate functions.

To enable a POA to compute all possible alternatives and to report the matched symbols to the
pattern matcher, some kind of memory is required. The following definition introduces both
state and memory functions that realise the desired functbnality.

Definition 2.3.3 (State Function, Memory Function)
LetP = (2, S, so, 6, F) be a POA. Any function IN —» S X Y is a state function of P. The state

function An.(so, £.w) is the initial state function for the word w € ™. In the following, State
denotes the set of state functions.

Any function f: N X S — X* is a memory function of P, iff Vn € N. f(n, so) = €. The memory
function A(n, s).¢ is the initial memory function. From now on, Memory denotes the set of all
memory functions.

18 The function type IN X S — 3 * denotes some kind of memory that is introduced in Definition .3.

19 I have chosen the name predicate object automaton for this special kind of finite state automaton,
because on the one hand transitions of the POA are guarded by boolean predicate functions, and on
the other hand the automaton consumes instances (objects) of the classes in .

- 36 -

2. Theoretical Background

A state function memorises the progress of a POA. For every alternative®® the POA explores, the
state function stores the state in which the POA currently resides and the remainder of the input
word. For each alternative, a memory function remembers under which input symbol a state
has been reached.

To describe how a POA processes an input word, the following functions that operate on state
and memory functions are required.

Definition 2.3.4 (Skip, Consume, Copy, Erase)
LetP = (2, S, so, 8, F) be a POA, f a state function of P and g a memory function of P.

The function skip: N X S X State X Memory — State X Memory omits the first symbol of the
unprocessed suffix and associates that symbol with the given target state. Letn € N, s, t € S,
ae€ Xandx,y, z € ¥ sothatf(n) = (s, x.ay) and g(n, t) = z.

The result (f', g) = skip(n, t, f, g) is then defined as:

za k=n Ans=t
g(k,s) else.

(t,xa.y) k=n

| f(k) else. g = Alk,s).

f= Ak

The function consume: IN X S X State X Memory — State X Memory consumes the first symbol
of the unprocessed suffix and associates that symbol with the given state. Let n € N, s, t € S,
a € X andux,y, zin X*, so that f(n) = (s, x.ay) and g(n, t) = 2.

The result (f', g") = consume(n, t, f, g) is then defined as:

za k=n As=t

K (t,xy) k=n
g(k,s) else.

f(k) else. g = a(k,s).

fr=

The function copy: IN X IN X State X Memory — State X Memory copies an entry of the given
state and memory function. Let n, m € IN.

The result (f', g") = copy(n, m, f,) is then defined as:

f(n) k=m
f(k) k#m.

g(n,s) k=m

"= Ak, s).
8 (K, s) g(k,s) k#m.

f = Ak

The function erase: IN X State X Memory — State X Memory removes an entry from the given
state and memory function. Let n € IN.

The result (f', g") = erase(n, f, g) is then defined as:

f(k) k<n
f(k+1) k=n.

g(k,s) k<n

"= Ak, s).
§ (k,s) glk+1,s) k=n.

f = Ak,

By means of state and memory functions and the operators skip, copy, consume and erase, the
following definition formally describes how a POA processes an input word. Note that memory
functions represent the context in which the side condition of a transition is being evaluated.

To describe more complex algorithms in the following, I will use pseudo-code, which is a mix-
ture of mathematical notation and the C programming language. From the point on where a
pseudo-code function has been defined, this function may be reused in any other algorithm

20 Each alternative is uniquely identified by a natural number.

-37-

Chapter III - Theory

thereafter Additionally, functions may be overloaded, just as it possible in the C** programming
language. Furthermore, any function may throw an exception to indicate a fatal error and to
stop the computation immediately. Finally, it is possible to assign multiple variables at once,
whereas the righthand side expression is evaluated first, before the assignment is performed.

Definition 2.3.5 (Configuration, Step, Acceptance)

LetP = (2, S, so, 6, F) be a POA. A triple (f, g, n) € State X Memory X IN is a configuration of
P. Iff f is the initial state function of P for a word w € 3* and g is the initial memory function of
P, then (f, g, 1) is the initial configuration for the word w. The triple (f, g, n) is a final con-
figuration, iff Vi € Nwith 1 <i < n. f(i) = (s;, viw;) and s; € E

The step binary relation >» < (State X Memory X IN) X (State X Memory X IN) transfers a con-
figuration into another. The transition (f, g, n) >p (f', g', n') is computed according to the
pseudo-code function step that is defined as follows:

State X Memory X IN step (State X Memory X IN (f, g, n)) {
leti,j e Nwithi = 1andj = n;
while (i <)) {
let (s, x.y) € S X Y with (s, xy) = f(0);
ifsefPHi=i+1;

else {
letM = 0 € p(6);
if (y # ¢)

M = {(s, (a, @), t) € 6§ | y[0] is an instance of the classa A q(i, g§) = true}
U {(s, skip, t) € 6}
U {(s, & 1) € 6}

if (M #0){
letk, me Nwithk =iandm = 1;
foreach (s, c,t) € M {
if (m++ < |M|){
nk=mhn+1,n+1);
(f, & = copy(i, k, f, 8);
}
if (c = (a, Q) (f, &) = consume(k, t, f, 8);
else if (c = skip) (f, g) = skip(k, t, f, &);

else f = An. (t,xy) i=n

f(n) else.
}
i=1+1;
}
else {
(,n)=0-1L,n-1);
(f, 8 = erase(i, f, 8);
}
}
}
return (f, g, n);

- 38 -

2. Theoretical Background

The function step iteratively modifies the current alternatives. As long as an alternative does not
reside in a final state of the POA P, the function determines all possible target states that can be
reached under the current input symbol. If no state can be reached, step removes that alternat-
ive. Otherwise, the function creates as many copies of that alternative as necessary and modifies
the state and memory function according to the taken transitions.

Iff f is the initial state function for a word w € XY™ and g is the initial memory function such that
there exists a series of configurations (f, g, 1) =» ... &p (f', g, n), where (f', g', n) is a final
configuration and n > 0, the automaton P matches w with (f', g', n). Iff x; is a prefix of w and
Jdi e Nwith 1 <i < n. f'(iQ) = (s;, 2i.y:) such that w = x;y;, the automaton P accepts the prefix
x; of w.

The set L, = {w | P accepts w} is the accepted language of P.

If a pattern matcher's predicate object automaton matches a word w € X* with (f, g, n), the set
{uvi | f@ = (s, wvi) A1 <1 < n} contains the residues of all possible alternatives. After hav-
ing chosen one of the alternatives, the pattern matcher continues, processing the corresponding
residue word, if that word is not the empty word.

Example 2.3.6

Let X = {a, b}, whereas the classes a and b are not correlated in any way. Additionally, let the
POAP = (3, {s, t, u, v}, s, 6, {v}) with & as Figure III.2 shows. Note that the used transition
guards always return true. The POA P matches any input word that begins with the symbol a
and that ends with the symbol b, whereas P does not consume the inner symbols.

O Initial State
Q State

© Final State

skip —» Transition

Figure II1.2: Predicate object automaton that accepts the language {a}>*{b}.

The automaton P matches the input word aaabbb with (f, g, 3). Table III.3 shows the final state
function f and memory function g, whereas the red marked symbols denote the symbols that P
has skipped.

i f g@, t) g(i, w g, v) Accepted Prefix
1 (v, aa.bb) a aa b aaab

2 (v, aab.b) a aab b aaabb

3 (v, aabb.) a aabb b aaabbb

Table I11.3: Final state and memory function after matching aaabbb.

-39-

Chapter III - Theory

3. Pattern Matcher Theory

Besides the theoretic fundamentals that were discussed in Section 2, this section first covers ad-
ditional necessary mechanisms, before it formally describes the pattern matcher.

3.1. Pattern

To spare the user to manually construct every POA of a pattern matcher, the following defini-
tion introduces three different pattern types, with which the user can easily specify the instruct-
ion patterns a POA should identify, and how the pattern matcher should replace the matched
instructions.

Definition 3.1.1 (Item Pattern, Wildcard Pattern, Sequence Pattern)

A tuple (a, q) € 3 X Predicate is an item pattern over X that describes an input symbol that is
an instance of the class a and that satisfies the side condition q.

The symbol * represents a wildcard pattern over X that denotes an unlimited number of input
symbols. As a wildcard pattern does not consume input symbols, this pattern type can be used
to skip uninteresting input symbols the pattern matcher should process later on.

Asets = {p; | piis a pattern over X A 1 <i < n} is a sequence pattern of length n € IN over
2. A sequence pattern is either ordered (the patterns must be processed in the given order, first
pi1, then p., etc.) or unordered (the patterns may be processed in any order). It immediately
follows that an unordered sequence pattern of length n stands representatively for n! different
ordered sequence patterns. In the following, square brackets (i.e., [p, ..., p.]) denote ordered
sequence patterns, whereas curly brackets (i.e., {ps, ..., p»}) represent unordered sequences.

A pattern p is a subpattern of a sequence pattern s, iff p € s or iff p is a subpattern of any se-
quence pattern t witht € s.

INIT Pattern p =

Figure II1.3: Rules to generate a predicate object automaton for a pattern.

- 40 -

3. Pattern Matcher Theory

Each pattern type can be understood as a compact representation of a predicate object auto-
maton. It turns out that there exists a POA for every pattern, but obviously not the other way
round. Figure II1.3 shows how to generate the corresponding automaton for a pattern p. To re-
ceive the final automaton, the rules must be applied as long as there exists an edge that is la-
belled with a pattern.

The construction rule USQ demonstrates how compact the pattern representation is. Because
the unordered sequence on the left side abbreviates n! different ordered sequences, the final
predicate object automaton on the right side has to contain n! mutually exclusive paths, not to
match the same subpattern p; twice. Because every subpattern has to appear on each path, the
generated automaton consists of multiple states that are reached under exactly the same side
condition. So, when the automaton processes an input word, the used memory function re-
sembles a sparse matrix, because the automaton can only process the input word along a single
path for every alternative. Each entry that does belong to a state that is not part of that path
will simply remain unused (see Example .9).

In the worst case, using the generated POA thus results in an extensive waste of memory. To
remedy this drawback, it is feasible to simulate the corresponding automaton for any pattern.
However, the simulation requires additional mechanisms that are introducedin the following.

Example 3.1.2

Figure I11.4 shows the construction of the corresponding predicate object automaton for the pat-
tern [{(a, true), x}, (b, true)]. The automaton accepts those words whose prefix begins with a
and ends with b, allowing an arbitrary number of symbols between the two symbols, or whose
prefix starts with an arbitrary sequence of symbols and ends with ab.

Used Rules Automaton

INIT @ [{(a, true), *}, (b, true)] =@)
, true), b
05Q, ITEM @ true), =) Q b @

UsQ, ITEM

WILD

skip

Figure II1.4: Predicate object automaton for [{(a, true), x}, (b, true)].

-41 -

Chapter III - Theory

To simulate the corresponding POA for an arbitrary pattern, the simulation has to select the pat-
terns that should be matched next. Because sequence patterns only are pattern containers, the
simulation only has to care about item and wildcard patterns. The following definition introd-
uces the function SUB that computes the set of all subpatterns of a pattern, omitting all se-
quence patterns. Additionally, the definition introduces a method to access and to uniquely
identify the subpatterns of a pattern. This mechanism is not required in the simulation, but of
use to the pattern matcher, as demonstrated later on.

For the remainder of this chapter, the set Pattern abbreviates the set of all patterns, whereas the
set Sequence Pattern denotes the set of all sequence patterns.

Definition 3.1.3 (SUB, Size, Index)

For any pattern p the function SUB: Pattern — ¢ (Pattern) recursively computes the set of non-
sequence subpatterns of p.

(U ¢ p is a sequence pattern
SUB(p) = |qep

{p} else.

The number of non-sequence subpatterns a pattern p comprises determines the size of p. So,
the size of the pattern p is defined as follows:

size(p) = |SUB(p)]|.

Let s be a sequence pattern of length n € IN with p, ..., p, € s. For 1 < i < size(s), the function
pattern: IN X Sequence Pattern — Pattern determines the i-th pattern p € SUB(s). Because se-
quence pattern may be subpatterns of sequence patterns, the equation pattern(i, s) = p: does
not hold necessarily. The function pattern is defined as follows:

-1
p Es z size(p,) = i—1 A p,is not a sequence pattern
k=1

pattern(i, s) = -

pattern(i—m, p,) else, with m = Z size(p,) A m <1< m+size(p).
k=1

The function pattern assigns a unique number to any subpattern of a pattern, so that they can
be discerned from each other. Iff i € IN with pattern(i, s) = p, then i is the index of p*’. The
index of a sequence pattern, is the index ofits first non-sequence subpattern.

In the following, s[i] abbreviates pattern(i, s).

Example 3.1.4

Let s = {(b, true), *x} be an unordered sequence pattern and t = [(a, true), s] be an ordered
sequence pattern. Then, SUB(t) = {(a, true)} U SUB(s) = {(a, true), (b, true), *}, whereas
size(t) = 1+size(s) = 3.

By definition of t and s, there are three different non-sequence patterns that the pattern func-
tion makes accessible. So, t[1] = (a, true), t[2] = s[1] = (b, true) and t[3] = t[2] = *.

21 The indexes of the subpatterns of a pattern resembles the order in which they have been specified,
as Example .4 shows. I have chosen this type of numbering to make the description of a pattern
matcher as easy as possible (see Section 2 of Chapter IV). Nonetheless, a tree-like numbering would
also have been possible, where e.g., 1.3 would denote the third subpattern of the first subpattern.

-42-

3. Pattern Matcher Theory

Similar to the step binary relation (see Definition .5), the simulation of the corresponding POA
for an arbitrary pattern operates on a state and a memory function. However, in contrast to the
automaton, the set of states used in the simulation will be the set of all non-sequence
subpatterns of the pattern, whose corresponding POA is to be simulated. Memory functions (see
Definition .3) are unfortunately not sufficient for this approach, because when processing
wildcard patterns, the simulation requires an extended memory function that knows whether a
wildcard pattern has finished to skip input symbols. This information is necessary, so that wild-
card patterns only skip input symbols that are adjacent to each other

Additionally, the simulation requires the auxiliary function finish that operates on extended
memory functions. How the functions skip, copy, consume and erase (see Definition .4) operate
on extended memory functions is implicitly clear.

Definition 3.1.5 (Extended Memory Function, Finish)
Let p be an arbitrary pattern, S = SUB(p) the set of subpatterns of p. An extended memory
function of p is a function of the type IN X S — 3* X B. The function A(n, s) = (e, false) is the

initial extended memory function. In the following, ExMemory denotes the set of all exten-
ded memory functions.

Let g be an extended memory function of p, g an arbitrary subpattern of p — this includes se-
quence patterns that are not contained in S — and i € IN. The pattern q is finished for the i-th
alternative, iff g(i, q') € 2* X {true} for every q' € SUB(q). So, a pattern is finished, iff itself
and all of its subpatterns are finished.

The function finish: IN X S X ExMemory — ExMemory marks a pattern s for the alternative n as
finished. The resultg' = finish(n, s, g) is then defined as:

g = A(k, s). (w,true) k=nA s=t
g(k,s) else.

The following definitions introduces three functions that are essential to the simulation of a
POA. The function ITEM determines the amount of item patterns that have not yet consumed
an input symbol. The simulation uses this function to determine whether a wildcard pattern
may continue skipping input symbols. If e.g., three input symbols are left and three item pat-
terns still have to match an input symbol, it would not make sense to skip any more symbols.
Additionally, functions FIRST and FOLLOW enable the simulation to determine the patterns that
should be matched next.

Definition 3.1.6 (FIRST, FOLLOW, ITEM)

Let p be an arbitrary pattern, g be an arbitrary subpattern of p, S = SUB(p) be the set of non-
sequence subpatterns of p and g be the used extended menory function of p.

The function FIRST,: IN X Pattern — ¢ (S) determines for any alternative i € IN the first non-
sequence subpatterns of q that have to be processed next:

« If g is a non-sequence pattern, there are two possibilities:
+ Iff q is finished for the i-th alternative, FIRST,(i, q) := 4.
+ Otherwise, FIRST,(i, q) = {q}.
« Iffq = [qi, ..., q.] is an ordered sequence pattern, FIRST,(i, q) = FIRST,(i, q1).
- Iffq ={qi, ..., .} is an unordered sequence pattern, FIRST,(i, q) ‘= \U FIRST,(i, q;).

;€49

-43 -

Chapter III - Theory

The function FOLLOW,: IN X Pattern — ¢ (S) determines for any alternative i € IN all unfinished
subpatterns of p that follow the subpattern q:

Iff g is a wildcard pattern that is not finished for the i-th alternative, let Q = {q}. Otherwise, let
Q=24.

« Ifg e swiths = [qi, ..., g.] an ordered sequence subpattern of p, there are two pos-
sibilities:
« Iff 3j € Nwith 1 <j < n such thatq = q;, FOLLOW,(i, q) := FIRST,(i, gj+1) U Q.
. Otherwise, ¢ = gn, 50 FOLLOW,(i, q) := FOLLOW,(i, s) U Q.

« If g € s, where s is an unordered sequence subpattern of p, there are again two pos-
sibilities:
« Iff s is finished for the i-th alternative, FOLLOW,(i, q) = FOLLOW,(i, s).

+ Otherwise, some subpatterns of the sequence pattern s are still unfinished for the i-
th alternative, so FOLLOW,(i, q) = \U FIRST,(i, q) U Q.

q;€s
q;#4

« In any other case FOLLOW,(i, q) = Q.

The function ITEM,: N X Pattern — & (S) determines those item patterns in S that are not yet
finished, so for any i € IN, ITEM,(i, p) = {s € S | s is an item pattern A s is not finished for i}.

Example 3.1.7

Let p = {(a, true), *, (b, true)} be an unordered sequence pattern, g be an extended memory
function of p, where g(2, p[1]) = (a, true), g(2, p[2]) = (aa, false) and g(2, p[3]) = (¢, false),
and w = b the remaining suffix of the original input word. The current active pattern is the
wildcard pattern p[2]. Using the previously introduced functions, the simulation decides how to
proceed in the second alternative as follows:

« The algorithm first has to determine the subpatterns of p to continue with. It follows
that FOLLOW,(2, p[2]) = FIRST,(2, p[1]) U FIRST,(2, p[3]) U {pl[2]} = {pl[2], p[3]}.
The wildcard pattern p[2] appears in that set, because the pattern is not yet finished, as
well as the item pattern p[3].

« For each pattern in FOLLOW,(2, p[2]), the algorithm would create a new alternative.
However, a closer look at the remaining input symbols — there is only one — and the
number of unfinished item patterns ITEM,(2, p) = {p[3]} reveals that it is senseless to
let the wildcard pattern p[2] to skip any more items, because there would then be no
more input symbol left for p[3].

 Finally, the algorithm decides to finish the wildcard pattern and modifies the memory
function such that g(2, p[2]) = (aa, true) and g(2, p[3]) = (b, true). Thus, the second
alternative represents a successful match.

The following definition introduces the notion a pattern configuration that comprises a state
function, an extended memory function and the number of currently active alternatives. With
the above introduced mechanisms a pattern configuration can be transferred into another. As
extended memory functions represent the context in which the boolean predicate function of an
item pattern is being executed, the boolean predicate function of any item pattern must be of
the type IN X ExMemory — B from now on.

- 44 -

3. Pattern Matcher Theory

Definition 3.1.8 (Pattern Configuration, Pattern Step, Pattern Acceptance)

Let p be an arbitrary pattern and S = SUB(p) U {so} the set of states such that s, ¢ SUB(p). A
triple (f, g, n) € State X ExMemory X IN is a pattern configuration. Iff f is the initial state
function for an arbitrary input word w € 3* and g is the initial extended memory function for p,
the triple (f, g, 1) is the initial pattern configuration for w. A triple (f, g, n) is a final pattern
configuration, iff Vi € N with 1 < i < n, f(i) = (s;, u.vi) such that FOLLOW,(i, s;)) = 4.

The pattern step binary relation >, < (State X ExMemory X IN) X (State X ExMemory X IN)
transfers a pattern configuration into another. The transition (f, g, n) >, (f', g, n') is computed
according to the pseudo-code function step that is defined as follows:

State X ExMemory X IN step (State X ExMemory X IN (f, g, n)) {
leti,j € INwithi =1 andj = n;
while (i <) {
let (s, x.y) € S X Y with (s, x.y) = f(1);
let F € p(S) with F = FIRST,(i, p) if s = so and F = FOLLOW,(i, s) else;

f(F=0)i=i+1;

else {
letM =0 € p(S);
if (y # ¢)

M = {(a, q) € F | y[0] is an instanceof a A q(i, g) = true} U {x € F};

if (M #0){
letk, ne Nwithk =iandm = 1;
foreacht € M {
if (m++ < |M|){
nk)=(n+1,n+ 1);
(f, & = copy(, k, f, 8);
I3
if (t = (a, q)) (f, g = consume(k, t, f, g);
else if (|y| > ITEM,(, p)) {
n=n+1;
(f, & = copy(k, n, f, &);
(f, & =skip(n, ¢, f, &);
b
g = finish(k, t, 2);

}
i=i+1;
b
else {
(U,n)=0-1,n-1);
(f, &) = erase(i, f, 8);
}
b
¥
return (f, g, n);

- 45 -

Chapter III - Theory

The function step iteratively processes the current active alternatives. Similar to the transition
function introduced in Definition .5, the above function determines the set of target states that
can be reached with the current input symbol. If there are no target states for an alternative, the
alternative is finished. Otherwise, the step function selects all those states, whose side condition
is satisfied. If there are no such states, the algorithm erases the corresponding alternative.
Otherwise, the step function copies the current alternative with respect to the number of
available target states.

The main difference to the POA step relation is, that the states, on which the pattern step re-
lation operates, are the subpatterns of the pattern p, whose corresponding POA is to be simu-
lated. Additionally, the above algorithm behaves more intelligent than the POA step function,
because the above function only allows wildcard patterns to consume any more input symbols,
if there are enough symbols left for the remaining item patterns.

Iff f is the initial state function for a word w € X* and g is the initial extended memory function
of p such that there exists a series of pattern configurations (f, g, 1) >, ... &, (f', &, n), where
(f', g, n) is a final pattern configuration and n > 0, the pattern p matches the input word w
with (f', g', n). Iff x; is a prefix of w and 3i € N with 1 <i < n and f'(Q) = (s;, 2:.y:) such that
w = X;¥;, the pattern p accepts the prefixx; of w.

The set L, = {w | p accepts w} is the accepted language of p.

Example 3.1.9

Let X = {a, b, c} be an alphabet, where the classes a, b, and ¢ are not derived from one another,
and p = {(a, true), (b, true), (c, true)} be an unordered sequence pattern. Because every item
pattern can only consume exactly one symbol of X, the accepted language of the pattern p is
L, = {abc, acb, bac, bca, cab, cba}. Figure II1.5 shows the corresponding POA P for the pattern p.

Figure III.5: Corresponding POA for {(a, true), (b, true), (c, true)}.

When processing any input word, the POA P can only take one path for every alternative. Thus,
the used memory function g resembles a sparse matrix of which only 3 of 16 cells are used for
every alternative (there is always only one alternative in this example), as Table III.4 demon-
strates. The table shows the function values of the memory function g after the POA P has
matched the input word cba.

- 46 -

3. Pattern Matcher Theory

8(1,s0) g(1,s1) g(1,s2) g(1,ss) g(1,s) g(1,ss) g(1,ses) g(1,s7)

& & & C & & & &

8(1,s5) g(1,s0) g(1,t) g(1,t) g(1,ts) g(1,t) g(1,ts) g1, ts)

13 b I3 13 £ 13 £ a

Table II1.4: Memory function g after matching the word cba.

So, the major disadvantages of the corresponding POA P are the extreme waste of memory of
the memory function (only 18.75% are used) and the different memory function entries that
correspond to the same item pattern. In this example, g(1, s.) with s, € {s3, Ss, Ss, t4, ts} might
store the matched input symbol that belongs to the item patternp[1].

Both disadvantages can be overcome, by simulating the POA P according to Definition .8.
Matching any valid input word, the simulation of P will always produce an extended memory
function g' that resembles the matrix that Table III.5 shows.

8'(1, so) g'(1, p[1D) g'(1, pl2D) g'(1, p[3D)
(¢, false) (a, true) (b, true) (c, true)

Table I11.5: Extended memory function g' after matching a valid input word.

Although the simulation means an increase in runtime (the FOLLOW, set must be recomputed
after every step), the achieved advantages, such as minimal memory consumption, certainly
outweigh the (minimal) loss in speed.

-47 -

Chapter III - Theory

3.2. Rule

As hinted at the beginning of this chapter, a pattern matcher comprises profiles, which are finite
sets of rules. A rule is dedicated to a certain kind of problem, such as the compilation of a bin-
ary operation. In this approach, four properties define the behaviour of a rule. The search pat-
tern describes a sequence of instructions the rule should replace, whereas the replace pattern
determines how the rule should substitute the matched instruction sequence. Additionally, the
rule is defined through a cost function, which assigns a cost to each alternative of a successful
match, and a global condition function, which checks global properties of the matched instruc-
tion sequence.

In the following, Y, denotes an arbitrary alphabet that comprises instruction classes that the
symbols of any input word instantiate, which the search pattern of a rule matches, are instances
of, whereas X, denotes an arbitrary alphabet of instruction classes of which the output sym-
bols of a rule's replace pattern are instances.

Definition 3.2.1 (Search Pattern, Replace Pattern)

Any sequence pattern s over Y, wWhere SUB(s) comprises at least one item pattern over X, is a
search pattern over ;. Search patterns match instruction sequences a rule replaces later on.
In the following, Search Pattern denotes the set of all search patterns.

Any function r: IN X ExMemory — X7 is a replace pattern over Y, that produces a sequence

of instructions for an alternative and an extended memory function. In the following, the set
Replace Pattern denotes the set of all replace patterns.

Search patterns must contain at least one item pattern, to guarantee that the pattern matcher
eventually terminates. If a pattern matcher would always chose rules, whose search pattern
only consists of wildcard patterns, the input word would not be modified (wildcard patterns do
not consume input symbols), which causes the pattern matcher to loop forever Because item
patterns consume an input symbol — under the assumption that their side condition is satisfied —
there will be no more input symbols left after a finite number of iterations.

Search patterns differ additionally from usual patterns with respect to their way of processing
an input word. When a search pattern matches an input word, the first pattern to match must
always be an item pattern. If there is only a wildcard pattern to begin with, that pattern will be
directly marked as finished. This procedure continues, until the search pattern encounters an
item pattern. Thus, the search patterns [*, (a, true), (b, true)] and [(a, true), (b, true)] are
equivalent. The main reason for this matching behaviour is to clearly define at which location a
rule will insert its replace pattern. This is especially important, when a pattern matcher optimi-
ses a basic block.

Consider the instruction alphabet Y, = Y. = {SIN, COS, SCS}, where SIN is the class of sine
instructions, COS denotes the class of cosine instructions and SCS represents the class of in-
structions that computes sine and cosine in parallel. Let s = {(SIN, true), *x, (COS, true)} be a
search pattern and r = A(n, g).SCS be a replace pattern that substitutes the instruction se-
quence that s matches. The basic idea is that the replace pattern r will be inserted at the posit-
ion where the input symbol resides that the first item subpattern of s matches. So, virtually, the
instruction that the second item pattern matches will be pushed upwards past the wildcard pat-
tern s[2], because the pattern matcher assumes that the replace pattern r logically combines the
instructions that the item patterns s[1] and s[3] match. Naturally, this behaviour requires the
pattern matcher to verify whether it is valid push instructions upwards, as Example .6
demonstrates.

- 48 -

3. Pattern Matcher Theory

For efficiency reasons, each search pattern s automatically marks all wildcard patterns as fin-
ished, if every item pattern has matched an input symbol (i.e., ITEM,(i, s) = &, for any i € N
and the used extended memory function g). Thus, the search pattern [(a, true), (b, true), *] is
equivalent to [(a, true), (b, true)].

Example 3.2.2

Let > = {a, b, c} be an alphabet and s = {(a, true), x, (b, true)} be a search pattern over 3.
Although s is an unordered sequence pattern, the above restrictions force s to only accept input
words that either begin with a and end with b or the other way round. So, s abbreviates the
ordered sequence patterns [(a, true), *, (b, true)] and [(b, true), *, (a, true)]. Table III.6 shows
the resulting alternatives, after the search pattern s has matched the input word babac with the
configuration (f, g, 2), whereas the red marked symbols denote the symbols that the wildcard
pattern s[2] has skipped.

i f g(i, s[1]) g(i, s[2]) g(i, s[3]) Accepted Prefix
1 (s[1], .bac) @ (a, true) (&, true) (b, true) ba
2 (s[1],ab.c) (a, true) @ (ab, true) @ (b, true) baba

Table III.6: Pattern configuration after matching babac.

After the search pattern of a rule has matched an input word, the rule first verifies whether
each generated alternative satisfies the rule's global condition and assigns a cost to each valid
alternative. Based on this information, the rule selects one of the alternatives that determines
the outcome of the replace pattern. After the rule has inserted the replace pattern's value, the
pattern matcher determines the residue ofthe input word to process next.

The following definition introduces mechanisms that are required to formally describe a rule
and its functioning.

Definition 3.2.3 (Condition Function, Cost Function, Residue, Check)

Let s be any search pattern over X, S = SUB(s) be the set of non-sequence subpatterns of s,
B = {true, false} be the set of boolean constants and (f, g, n) be a final pattern configuration
for an arbitrary input word.

Any function IN X ExMemory — B is a condition function that verifies whether an alternative
satisfies a global side condition. In the following, Condition abbreviates the set of condition
functions.

Any function IN X ExMemory — Z is a cost function that assigns an integer cost to an altern-
ative depending on the matched input symbols. The cost of an alternative may be negative to
indicate that an optimisation is better than another (the lower the cost the better). In the fol-
lowing, Cost denotes the set of all cost functions.

The function residue: N X State — X7, determines the residue word of an arbitrary alternative.
For any i € IN, residue(i, f) = x;y;, iff f(Q) = (s, x..y:). The residue word is a remainder of the
original input word the pattern matcher must process next.

The function check: (State X ExMemory X IN) X Condition — State X ExMemory X IN operates
on a pattern configuration by removing all alternatives that do not satisfy the given condition.
The function behaves as the following pseudo-code function:

- 49 -

Chapter III - Theory

State X ExMemory X IN check ((State X ExMemory X IN) (f, g, n), Condition c) {
leti € Nwithi = 1;
while (i < n)
if (c(i, &) = false) {
(f, &) = erase(i, f, g);

n=n-1;
b
else
i=1+1:
return (f, g, n);

}

Example 3.2.4

Let > = {a, b} be an alphabet, where the classes a and b are not correlated with each other,
s = [(a, true), x (b, true)] be a search pattern over X, w = abb be an input word and (f, g, 2)
be the final pattern configuration for w, as Table III.7 shows. The red marked symbols denote
the input symbols the wildcard pattern s[2] has skipped.

i f g(@i, s[1]) g(i, s[2]) | g(i, s[3]) Accepted Prefix
1 (s[3], .b) (a, true) (e, true) | (b, true) ab
2 (s[31, b)) (a, true) (b, true) (b, true) abb

Table III.7: Final pattern configuration after matching abb.

Additionally, let ¢ = A(n, g).g(n, s[2]) = (b, true) be a condition function. The function check
will remove the first alternative, because g(1, s[2]) = (¢, true) # (b, true), so only the second
alternative remains. Thus, check((f, g, n), c) = (f', g, 1), where f'(1) = f(2) and g'(1) = g(2).

The residue word to continue with is then residue(1, f") = b, where b is the input symbol that
s[2] has skipped before.

Using the above introduced mechanism, the following definition formally describes rules and
their functioning.

Definition 3.2.5 (Rule)

A quadruple r = (sp, g, ¢, rp) € Search Pattern X Condition X Cost X Replace Pattern, where sp
is a search pattern over Y, and rp is a replace pattern over ., is a rule for the input alphabet
X and the output alphabet X,,.

Both the search pattern sp and the condition function g determine the requirements before the
rule may be applied. So, iff sp matches an input w over X, with (f, g, n) and there exists at
least one alternative that satisfies the rule's side condition — check((f, g, n), q) = (f', &, m),
where m # 0 — the rule r matches the input word w with (f', g', m).

Both cost function ¢ and replace pattern r determine the behaviour of the rule, after the rule has
matched an input word. A rule generally selects an alternative with the cheapest cost, before
generating an output word over ., with respect to the replace pattern and the previously se-
lected alternative.

In the following Rule denotes the set of all rules. For any r € Rule, search(r) stands represent-

- 50 -

3. Pattern Matcher Theory

atively for the search pattern of the rule r, whereas replace(r) denotes for the rule's replace
pattern. Additionally, condition(r) and cost(r) represent the condition and cost function of the
ruler.

The function cheapest: Rule X (State X ExMemory X IN) — IN makes use of the cost function of
a rule to determine a cheapest alternative of a final pattern configuration. If more than one
alternative has the cheapest cost, the function cheapest selects the alternative with the lowest
number.

cheapest(r, (f', g', m)) =min {i | cost(r)(i, g) = min {cost(r)(j, g) | 1 <j < m}}.

If i = cheapest(r, (f', &', m)), then c(i, g') is the cost of the rule r, whereas residue(i, f') is the
residue of the ruler.

Example 3.2.6

Let i = {+, *} and X, = {ADD, MUL, MAD} be instruction alphabets, whereas each instruct-
ion of both alphabets has the three properties target, first and second, and MAD has the addi-
tional property third. Any instruction can be instantiated with a constructor, that receives the
properties of the instruction as arguments. The expression ADD(a, b, c) creates an ADD-instruc-
tion, where a is the target, b and c are the first and second operand of the instruction. The other
instructions can be instantiated similarly. Any property of an instruction can be accessed with
the dot-operator. For example, if a € Y, then a.target denotes the target of the instruction in-
stance a. The other properties can be accessed similarly.

An instance of + € X, is written as a = b+d, where a denotes the target variable and b and ¢
are the first and second operand of the instruction. Instances of * € Y, are represented simil-
arly. An ADD-instruction is written as ADD a,b,c, whereas a denotes the target register; b and ¢
represent the first and second operand. Instances of MUL and MAD instructions are written
analogously, whereas an MAD instruction is represented as MAD a,b,c,d, where d denotes the
third operand. The value of the target register of anMAD instruction is thena = (b*c)+d.

Two rules are sufficient to translate any basic block over 3, into a basic block over Y,.. The
rule add translates a +-instruction into its corresponding counterpart, whereas search pattern,
condition function, cost function and replace pattern of the rule add are defined as follows:

search(add) = Saaa = [(+, true)]

condition(add) = true

cost(add) =1

replace(add) = A(n, g).ADD (+.target, +.first, +.second) where g(n, s.a[11) = (+, true).

Translating a *-instruction into a MUL-instruction, the rule mul functions similarly.

Let v = *+++ be a source basic block over Y, and w = ¢ a target basic block over Y,.. The
different colours denote different instruction instances. Both rules add and mul iteratively
compile the source basic block v. Because v[0] is an instance of the *-instruction, only the rule
mul matches v with (fnu, gmu, 1), where 1 is the cost and +++ is the residue of mul.

So, mul modifies the target basic block such that w = replace(mul)(1, gma) = MUL. Only the
rule add is able to match the remainder of the source basic block w, because the remainder only
comprises instances of + € ;. Analogously, the rule add then compiles the residue of the
source basic block, which results in the target basic block, as Figure III.6 shows.

-51 -

Chapter III - Theory

Source Code: Source Basic Block: Target Basic Block:
3*b;
(b = b+6)+3;
a+9;

a
(]
a

D Instruction

— Control Flow

Figure III.6: Code generation with rules.

A closer look at the target basic block reveals that the generated code is not optimal. The first
and the last instruction can be combined in the rule mad that is defined as follows:

search(mad) ‘= Smaa = [(MUL, true), *, (ADD, q)]

condition(mad) = true

cost(mad) =-1

replace(mad) = A(n, g).MAD(MUL.target, MUL.first, MUL.second, ADD.second), whereas

g(n, Smaa[1]) = (MUL, true) and g(n, sma[3]) = (ADD, true).

The side condition q of the item pattern s,.[3] checks whether the target of the matched MUL-
instruction is both the target and the operand of the matched ADD-instruction. It is necessary to
check whether the target of MUL-instruction and the ADD-instruction are the same, so that the
rule mad may remove both matched instructions and replace them by an MAD-instruction.

The rule mad matches the previously generated target basic block w = MULADDADDADD with (
fmads gmad> 1), where 1 is the cost and is ADDADD the residue of mad. Figure III.7 shows the
optimised basic block u = replace(mad) (1, gmea) ADDADD = MADADDADD.

Target Basic Block: Optimised Basic Block:

Figure III.7: Code optimisation with rules.

However, it is not valid to apply the above optimisation rule in every case. If the register a is
either read or written between the two matched instructions, the rule mad would wrongly
modify the basic block. To prevent this mistake, the condition of the rule mad should actually
be the following:

condition(mad) = A(n, g).the inner instructions x do neither read nor modify ADD.target,
where g(n, smal2]) = (x, true) and g(n, smal3]) = (ADD, true).

-52.

3. Pattern Matcher Theory

This problem always occurs whenever a wildcard pattern appears in a search pattern. So, the
pattern matcher generator generates rules that implicitly check these side conditions, which
prevents the user from making errors and the pattern matcher from generating invalid basic
blocks. Additionally, the pattern matcher does thus not force the user to repeat the same con-
dition over and over again.

The following section introduces a formal description of a pattern matcher and describes its
functioning in detail.

-53.

Chapter III - Theory

3.3. Pattern Matcher

The above introduced concepts make it finally possible to formally describe the functioning of a
pattern matcher. To generate or optimise an input basic block, a pattern matcher operates a
multitude of rules that are separated into profiles — one per supported target architecture.

Making use of a pattern matcher, which processes input basic blocks automatically, a user no
longer has to cope with low-level algorithms that search and replace instruction sequences. In-
stead, the user describes the code generation and optimisation process on a higher level of ab-
straction in terms of rules and profiles that determine the pattern matcher's behaviour.

Definition 3.3.1 (Profile)

A finite set of rules piou = {ri, ..., '}, where Vi € IN with 1 < i < n, r; is a rule for the input
alphabet 3, and the output alphabet Y., is a profile that translates basic blocks over X, into
basic blocks over Xour. Iff Xin = Xous, Pinour is an optimisation profile.

A pattern matcher comprises several profiles, each of which is dedicated to a target architec-
ture. In general, a compiler makes use of two pattern matchers, whereas the first one handles
the code generation, and the second one optimises the generated mde afterwards.

Definition 3.3.2 (Pattern Matcher)

Let X, be an input alphabet and 3, ..., 2, be different output alphabets. Any finite set of pro-
files PM = {pu,ic1, ..., Piniaw}, Where i: {1, ..., m} — {1, ..., n} is a surjective index function, is a
(retargetable) pattern matcher that compiles a basic block over J;, into a basic block over
any 3; withj € {1, ..., n}.

There are basically two different methods how a pattern matcher processes a basic block. On
the one hand, the pattern matcher can compile an input basic block in a single pass. This way of
processing an input basic block requires that after a finite number of iterations the rules of the
selected profile consume every instruction of the input basic block, so that the pattern matcher
eventually has processed the whole basic block. If there exists an instruction that the used rules
cannot consume, the pattern matcher is unable to compile the corresponding input basic block.
Obviously, this single-pass processing method realises the code generation. On the other hand,
the pattern matcher can make use of an optimisation profile to optimise an input basic block.
Because not every instruction sequence can be optimised, the rules of the selected profile are
not required to consume every instruction. As long as at least one rule matches (partitions of)
the basic block, the pattern matcher continues to optimise the input basic block. Because the
performed optimisations may result in new instruction sequences the pattern matcher could op-
timise, the pattern matcher generally processes the input basic block in multiple passes.

Both modes of operation make use of the costs of rules that match the input basic block. If
several rule match the input basic block with multiple alternatives, the pattern matcher might
always choose the cheapest rule (i.e., the rule with the cheapest alternative of all rules that
match the basic block). However, just like every greedy algorithm, the pattern matcher might
apply a sequence of rules whose total sum of costs is higher than the actual possible cost min-
imum. Thus, if the pattern matcher always takes the local cost minimum, it might miss the glob-
al cost minimum. So, the user has to determine whether the pattern matcher should determine
the local cost minimum or compute the global cost minimum. However, as Chapter V demon-
strates, the pattern matcher might not always generate more optimal basic blocks, while de-
termining the global cost minimum.

-54 -

3. Pattern Matcher Theory

Besides the cost minimum the pattern matcher should aim at, the user may also determine
whether the pattern matcher should always take the first matching rule and omit the other
rules. This first-match policy obviously has a positive impact on the runtime, but might also
cause the pattern matcher to produce less optimal results. In the following, the first-match
policy is not taken into account, and it is assumed that the pattern matcher always attempts to
match the input basic block with all profile-specific rules.

The following two sections introduce the single- and multi-pass processing mode and point out
the modifications in their implementation that are required to enable the pattern matcher to
determine the local and the global cost minimum.

For the remainder of this chapter, let PM = {ps, ... p»} be a pattern matcher for the input al-
phabet Y, and the output alphabets 3, ..., 3.

3.3.1. Single-Pass Matching Mode

To successfully compile an input basic block in a single pass, the rules of the used profile have
to consume the input basic block completely. If that is not possible, the pattern matcher has en-
countered a sequence of instructions that none of the used rules accepts. However, in this case,
it might still be possible to successfully process the whole basic block, if the pattern matcher
previously had to choose from multiple alternatives. So, the pattern matcher stores the alternat-
ives that a rule produces in a match, to enable the pattern matcher to backtrack.

Definition 3.3.3 (Match)

A tuple (r, (f, g, n)) € Rule X (State X ExMemory X IN) is a match of the rule r that matched
an input basic block with (f, g, n). In the following Match denotes the set of all matches.

The cost of the match m is the cost of the rule r.

cost(m) = cost(r) (cheapest(r, (f, g, n))).

The residue of the match m is the residue of the rule r.

residue(m) := residue(cheapest(r, (f, g, n)), f).

When aiming at the local cost minimum, the pattern matcher has to apply a rule that belongs to
a match with the cheapest cost. The function cheapest: ¢ (Match) — Match determines a
cheapest match out of a set of matches. If several matches are possible, the function always
chooses the first available match. Let M € ¢ (Match) be a set of matches.

cheapest(M) := m € M with cost(m) = min {cost(m") | m' € M}.

As hinted above, the pattern matcher might not be able to process the input basic block any
further. In this case, the pattern matcher uses the function next: g (Match) — @ (Match) that
removes the cheapest alternative of the cheapest match. If this match only comprises a single
alternative, the function completely removes that match from the given set of matches.

Let M € g (Match) be a set of matches, and m = (r, (f, g n)) = cheapest(M), if M # &. The
function next is then defined asfollows:

¥4} M=g
next(M) = {M\{m} n=1
M\{m} U (r, (f', g', n—1)) else, with (f', g') = erase(n, f, g).

-55.-

Chapter III - Theory

Algorithm: Compile basic block with respect to the local cost minimum (processSingleLocal).
Input: Basic block over Y.
Output: Basic block over desired target alphabet X .

let pinoue € PM;

¢ (Match) matchRules (3} u) {

return {(r, (f, & n)) | r € pim o matches u with (f, g, n)};
}

X processSingleLocal (X7 u) {
if(u=¢
return ¢;

let Q = ¢ € p (Match)*;
letq = @ € p (Match);
letve X withv =u;
do {
q = matchRules(v);
if (g # 0)
Q = Qq;
else {
while (g =0 A Q # ¢) {
q = next(Q[|Q|D);
Q = Q[1:|Q|-1];
if (g # Q)
Q =Qq;
I3
if (Q=2¢)
throw exception;
}
v = residue(cheapest(q));
} while (v # ¢&);

letw=ec€X;
fori =1to |Q|

w = w.replace(r;) (cheapest(ri, (f;, &, n:)), &) with (r;, (f;, &, n)) = cheapest(Q[i]);
return w;

h

The above implementation of single-pass processing mode that processes an input basic block
with respect to the local cost minimum is pretty straightforward. If the basic block is empty,
there is obviously nothing to do. Otherwise, the algorithm tries to match the remainder of the
basic block. If at least one rule of the used profile matches the remainder, the implementation
continues to process the residue of the cheapest match. Otherwise, the algorithm has reached a
dead end and has to backtrack, whereas the computation stops with an exception, if there is no
match left to restart the processing with. After having consumed the whole basic block, the
algorithm constructs the output basic block.

- 56 -

3. Pattern Matcher Theory

Example 3.3.4

Let 2in = {a, b} be the input alphabet, ... = {c, d} be the output alphabet, pm = {pi, ou} be a
pattern matcher, where pi, o = {11, 2, 13} is a profile for the input alphabet 3, and the output
alphabet 3. The rules r;, r, and r; are defined as follows:

ri = ([(a, true), *, (a, true)], true, -4, cc),
r2 = ([(a, true), *, (b, true)], true, A(n, g).-|w| with g(n, search(r2)[2]) = (w, true), cd),
r3 = ([(b, true), (a, true)], true, 4, dc).

Let Q = € € @ (Match)* be the sequence of matches and u = abab be the input basic block,
whereas the colours denote different object instances. The above rules are designed such that
the result of their replace patterns correspond to the matched input symbols by means of type
(c represents a, d represents b) and colour.

The pattern matcher pm processes the input basic block u as follows:

+ The rules match u with q; = {m; = (r1, (f1, &1, 1)), mz2 = (2, (f2, g2, 2))}, whereas the
rule r; produces one alternative with the cost -4 and the residue bb, and the rule r» gen-
erates two alternatives, of which the first one has the cost -2 and the residue ba, and the
second one has the cost 0 and the residue ab. The algorithm sets Q = q; and continues
to process the residue bb of the cheapest match (with cost -4).

« Unfortunately, there is no rule that matches the residue bb. Thus, the pattern matcher
has to backtrack and removes the cheapest alternative of the cheapest match. The al-
gorithm sets Q = g with g» = next(q;) = {m2} and continues to process the residue ba
of the cheapest match (with cost -2).

+ Only the rule r; matches ba, producing one alternative with cost 4 and residue ¢. So, the
algorithm sets Q = q»qs with g3 = {ms; = (s, (f35, g3, 1))}. Because all input symbols
have been consumed, the pattern matcher then constructs the final basic block w over
2w that is defined as follows:

w = replace(r2) (1, g2).replace(rs) (1, gs) = cd.dc = cddc.

The total sum of costs is then cost(r,, 1) + cost(rs, 1) = -2 + 4 = 2.

Table II1.8 shows which parts of the original basic block u = abab the rules ri, r> and r; have
matched while processing u.

Match Rule @ Alternative a b Cost
m; I 1 (a, true) * (a, true) - -4
1 (a, true) (b, true)
my Iz
2 (a, true) * (b, true) @ -2
ms Is 1 @, true) (a, true) - 4

Table I11.8: Generated alternatives while compiling abab (local cost minimum).

Although the pattern matcher had always chosen the cheapest alternative possible, the total
sum of costs is not optimal. By means of the following pseudo-code algorithm, Example .5
demonstrates how the achieve the global cost minimum while compiling a basic block.

-57.

Chapter III - Theory

Algorithm: Compile basic block determining global cost minimum (processSingleGlobal).
Input: Basic block over Y.
Output: Basic block over desired target alphabet X .

let pin, o € PM;

Z cost (Match* Q) {

letc=0€ Z;
fori = 1to |Q|

¢ =c¢ + cost(Q[iD;
return c;

h

Match extract (Match (r, (f, g, n)), N i) {
return (r, (f', g', 1)) with f'(1) = f() A g'(1) = g@);
}

Match* processSingleRecursive (X v) {
let g € o (Match) with q = matchRules(v);
if (g = 0)
return ¢;

let Q = ¢ € Match*;
foreachm = (r, (f,g,n)) €q
fori=1ton{
let P = ¢ € Match*;
if (residue(i, f) # €)
P = processSingleRecursive(residue(i, f));

if (P # ¢ V residue(i, f) = €) A (Q = € V cost(P) + cost(r)(i, g) < cost(Q)))
Q = pP with p = extract(m, i);
¥

return Q;

¥
2> . processSingleGlobal (X7 u) {
if(u=2¢)
return ¢;

let Q € Match* with Q = processSingleRecursive(u);
if (Q=2¢)

throw exception;
letw=c€3’;
fori =1to |Q|

w = w.replace(r;)) (1, g) with (r, (f, g, 1)) = Qlil;
return w;

- 58 -

3. Pattern Matcher Theory

The core procedure of the above implementation is the function processSingleRecursive, which
recursively computes a cheapest sequence of matches that consume the given basic block v.
First, the function tries to match v with the rules of the used profile. As it is not an error, if none
of the rules match the current basic block at this point, the function simply returns the empty
sequence of matches in that case. Otherwise, the function recursively computes a sequence of
matches that consume the residue of each alternative of the previously generated matches. To
determine the global cost minimum, processSingleRecursive then chooses the cheapest of these
sequences. If several sequences have the cheapest cost, the function automatically selects the
first sequence it encounters.

The function processSingleGlobal calls the function processSingleRecursive, to process the input
basic block u. If processSingleRecursive is not able to compute a sequence of matches that con-
sumes the input basic block, the pattern matcher cannot compile that basic block. Otherwise,
the main function generates the output basic block according to the sequence of matches that
the function processSingleRecursive has produced.

Example 3.3.5

Let the pattern matcher pm and the basic block u = abab be defined as in Example .4. In
contrast to the previous processing mode, the pattern matcher investigates every alternative, so
that the pattern matcher eventually detects a cheapest sequence of matches.

While processing the input basic block u, the pattern matcher has to choose between the two
sequences of matches m;m, and msm, that are displayed in Table III.9. Note that although the
rule r; matches u in the beginning (see Example .4), there is no sequence of matches that
begins with a match that originates from r; (no rule matches the residue bb). Both sequences of
matches represent all possible ways to process the input basic block u with the given rules. The
sequence m;m; is cheapest with cost 0. Applying the replace pattern of the rule r, twice, the

pattern matcher finally creates the output basic block w = cdcd.
Match Rule Alternative a b Cost
m; ra 1 (a, true) (b, true) - 0
my s 1 - (a, true) = (b, true) 0
ms) 1 (a, true) * (b, true) -2
my rs 1 - (b, true) | (a, true) - 4

Table II1.9: Generated alternatives while compiling abab (global cost minimum).

3.3.2. Multi-Pass Matching Mode

To optimise a basic block the mechanisms presented in the previous section are not satisfying.
Because not every instruction sequence can be optimised, the user would have to specify addit-
ional rules that consume and reinsert those sequences into the basic block, so that the pattern
matcher does not abort the processing with an exception. Furthermore, the user would have to
call the corresponding single-pass processing function manually as long as at least one rule can
be applied. However, this lack in functionality awfully diminishes the usability of this approach.
So, a pattern matcher offers two multi-pass processing modes that optimise any input basic
block.

The following pseudo-code implementation demonstrates how a pattern matcher optimises a
basic block with respect to the local cost minimum.

-59 .-

Chapter III - Theory

Algorithm: Optimise basic block with respect to the local cost minimum (processMultiLocal).
Input: Basic block over Y.
Output: Optimised basic block over Y.

let p € PM;

X* processMultiLocal (3* u) {
letx,y,ve X*withx =¢,y =uandv =u;
while (y # ¢) {
let g € o (Match) with q = matchRules(y);
if (q # 9) {
letm = (r, (f, g n)) € Match with m = cheapest(q);
x = x.replace(r) (cheapest(r, (f, g, n)), £);
y = residue(m);
u = xy;
¥
elseif (y # ¢) {
x = xa with a = y[0];
} y =y[L:y|L

if (y=¢)
if (v#u{
X = ¢;
y=u
V= u;
}
}

return u;

b

Always applying the rule that contributed the cheapest match, the above algorithm optimises a
basic block in multiple passes. Because the pattern matcher does not need to consume each
instruction and the pattern matcher does thus not have to backtrack if no rule matches, the
algorithm does not remember any previous match.

The function processMultiLocal operates on the basic block suffix y that is initialised with the in-
put basic block u in the beginning. Additionally, the algorithm stores the processed prefix of u in
the variable x and remembers the original version of the given basic block in v. The function
continues to optimise the basic block u until the suffix y is the empty word. To optimise the giv-
en basic block, the function processMultiLocal first tries to match the suffix y with every rule of
the used optimisation profile p. If existent, the algorithm chooses the cheapest match, appends
the replace pattern to the prefix x, assigns the residue of that match to y and finally updates the
basic block u. Otherwise, the function skips the first symbol of the suffix y, as no rule is able to
accept any prefix of y. By means of the optimised basic block u and its original version v, the al-
gorithm determines whether it should continue. If u and v do not differ from each other, either
no rule has matched or the replace patterns did not alter u. So, the function stops to optimise u
in that case. Otherwise, the function repeats that procedure as described.

The following example demonstrates how this processing method optimises a basic block.

-60 -

3. Pattern Matcher Theory

Example 3.3.6
Let X = {a, b, ¢, d} be the instruction alphabet, p = {ri, r2, s} be an optimisation profile and
pm = {p} be a pattern matcher The rules r;, > and rs; are defined as follows:

r1 = ([(b, true), (b, true)], true, 2, a),

r2 = ([(b, true), (b, true)], true, 1, cc),

rz = ([(c, true), (c, true)], true, 2, d).

Let u = abbcc € X* be the basic block to optimise. As previously, the colours denote different
instances, whereas the colours of the generated symbols resemble the matched instances.

The pattern matcher pm optimises the basic block u as follows:
1. The algorithm initialisesx with ¢, y with u and v with u.

2. As no rule matches y, the pattern matcher skips the first symbol of y, such that x =
and y = bbcc.

3. Then, the rules r; and r» match y with the matches m; and m. respectively, whereas both
rules only provide one alternative. Because m, is cheapest with cost 1, the pattern
matcher chooses to apply 2. Thus, x = acc, y = cc and u = acccc.

4. At this point, only the rule r; matches y with the match m; generating one alternative
with cost 2. So, the pattern matcher assigns x = accd, y = € and u = accd. Because y
has been consumed completely and v = abbcc differs from u, the pattern matcher de-
cides to restart and assignsx = ¢,y = u andv = u.

5. In the second iteration, only the rule r; eventually matches y with the match m.. After
this iteration, the optimised basic block is u = add. Again v and u differ from each other
and the pattern matcher begins the third iteration. However, because no rule matches y
in that iteration, the pattern matcher returnsadd, whereas the total sum of costs is 5.

Table II1.10 displays which parts of the basic block the rules r;, r» and r; have matched during
the first two iterations of the optimisation process.

Match Rule Alternative b b c c Cost
m; T 1 - (b, true) (b, true) - - 2
my) 1 - (b, true) (b, true) - - 1
ms Is 1 (a, true) - - (c, true) (c, true) @2

Match Rule Alternative c c d Cost
my Is 1 - (c, true) (c, true) - 2

Table I11.10: Generated alternatives in the first two passes while optimising abbcc.

However, the total sum of costs is not optimal. Example .7 demonstrates that, if the pattern
matcher chooses the most expensive alternative in the first place (see 3.), the total cost sum is
optimal.

So, using the following pseudo-code algorithm that determines the global cost minimum by
investigating every alternative, a pattern matcher might achieve better results.

-61 -

Chapter III - Theory

Algorithm: Optimise basic block determining the global cost minimum (processMultiGlobal).
Input: Basic block over Y.
Output: Optimised basic block over Y.

let p € PM;

2* X Z processMultiRecursive (3* x, X* y, X* u, Z cost) {
letq = @ € o (Match);
while (true) {
q = matchRules(y);
if (q # 0)
break;

if (y #¢e){
x = xa with a = y[0];
y =yll:|y[];

b

if(y=¢9)

if (¢ # u) {
u=x;
y=Xx
X = ¢;

b

else
return (u, cost);

}

letv =€ 3%
letc=0€ Z;
foreachm = (r, (f, g,n)) € q
fori=1ton{
let x' € X * with x' = x.replace(r)(i, 2);
lety' € X * with y' = residue(i, f);
let (w, d) € X*XZ with (w, d) = processMultiRecursive(x', y', u, cost + cost(r) (i, g));

if(v=c¢
v,) = w, d);
else if (d < ¢)
v, 0) = w, d);
¥
return (v, ¢);

h

2* processMultiGlobal (3* u) {
Zc=0;
(u, ¢) = processMultiRecursive(e, u, u, 0);
return u;

h

-62 -

3. Pattern Matcher Theory

Investigating every successful match, the function processMultiRecursive recursively optimises a
basic block. The function parameters have a similar meaning as in the multi-pass processing
function processMultiSingle. The function parameter x is a prefix of the input basic block that
has already been processed, y is a suffix of the basic block that is yet to be optimised, u is the
initial version of the input basic block before an optimisation pass, and cost is the cost of the
current iteration.

At first, the algorithm tries to match the suffix y. If no rule matches y, the algorithm skips the
first symbol of y, if y is not the empty word. If the suffix y is the empty word, the algorithm
decides whether to restart the matching. The function stops and simply returns u and cost, if the
optimised basic block does not differ from the given basic block u (i.e., x # u).

If at lest one rule matches the suffix y, the algorithm calls itself for every alternative of each
match to determine the cheapest optimisation. The algorithm eventually terminates, because it
stops to process the given basic block, if the that basic block cannot be altered any further.

Example 3.3.7

Let the pattern matcher pm be defined as in Example .6 and u = abbcc be the basic block to
optimise. According to the pseudo-code function processMultiGlobal, pm optimises u as follows:

1. The function processMultiGlobal calls processMultiRecursive(e, u, u, 0). Because none of
the rules matches y = u, the algorithm skips the first symbol of y (x = a) and matches
y = bbcc with the rulesr; and r», each of which provides only one alternative.

2. Assuming that the algorithm first investigates the alternative of r,, the function pro-
cessMultiRecursive calls itself with the parameters x = acc, y = cc, u = abbcc and the
cost 1:

a) At this point, only the rule r; is able to match y. Thus, processMultiRecursive calls
itself with the parametersx = accd, y = ¢, u = abbcc and cost = 3.

b) Because y is the empty word and x = accd differs from u = abbcc, the algorithm
sets x = ¢,y = accd and u = y to restart the matching. From now on, only . can
match, and the algorithm finally generates the basic block add with the cost 5.

3. Afterwards, the algorithm investigates the alternative of the rule r;, and calls the func-
tion processMultiRecursive with x = aa, y = cc, u = abbcc and cost = 2:

a) As previously, only the rule rs is able to match y. The algorithm then investigates the
alternative that r; provides and calls the procedure processMultiRecursive with the
parameters x = aad,y = ¢, u = abbcc and cost = 4.

b) Again, the algorithm decides to restart the matching, as y is the empty word and x
differs from u. However, in this case no rule matches any suffix y, so the function
simply returns the basic block aad with the cost 4.

4. It turns out that the second alternative has provided a cheaper optimisation. Because
there are no more alternatives left to investigate, the optimisation with the lowest
possible cost of the input basic block u = abbcc is then aad.

-63 -

Chapter III - Theory

3.4. Complexity

At first, this section discusses the worst-case runtime of a rule to match a basic block, before the
section estimates the runtime of a pattern matcher with respect to the four different processing
methods that were introduced in Section 3.3.

3.4.1. Rule

The used search pattern of a rule determines the number steps a rule needs to match a basic
block. The more alternatives a search pattern can produce, the more steps the search pattern
has to take to match a basic block. So, for n € N the runtime of the unordered sequence pattern
Dn = {*1, ..., *,} to match the basic block w of length m € IN represents an upper bound for the
runtime of any search pattern.

Naturally, the sequence pattern p, is not a valid search pattern, because it does not contain an
item pattern (see Definition .1). Additionally, when matching a basic block, each wildcard
pattern of p, will be immediately marked as finished, because there is no item pattern to start
with. However, in this case, I will simply disregard these restrictions.

Because the unordered sequence pattern p, abbreviates n! different ordered sequence patterns,
the runtime of p, can easily be derived from the runtime of the pattern g, = [*i, ..., *.]. If g
matches a basic block in k steps, then p, consequently takes n!*k steps to match the same basic
block. To derive a function that computes the runtime of g, it is first necessary to understand
how a wildcard pattern processes a basic block.

Basically, a wildcard pattern may choose between two operations to process a basic block. On
the one hand, the pattern may finish and leave that basic block to a successor. On the other
hand, the wildcard pattern may skip the first instruction of the basic block. To generate all pos-
sible alternatives, a wildcard pattern always performs both operations®. Thus, the runtime of a
wildcard pattern is determined by how often the wildcard pattern has finished and by the num-
ber of input symbols the wildcard pattern has skipped.

A wildcard pattern processes the basic block w as follows:

« If there at least one input symbol left (i.e., m > 0), the wildcard pattern produces two
alternatives. In the first one the wildcard pattern simply finishes to process the basic
block, whereas in the second one the pattern skips the current input symbol.

« Otherwise, the wildcard pattern has no other choice but to finish.

So, the wildcard pattern takes 2m+1 steps to generate all possible alternatives. A sequence of
wildcard patterns matches the basic block similarly, whereas the successor of a wildcard pattern
only continues to process the remaining input symbols as described, after that wildcard pattern
has finished.

This observation leads to the function steps: IN X IN — IN that determines the number of steps,
which the ordered sequencepattern g, needs to process a basic block of length m.

2m+1 + Z steps(n—1,i) n>0
steps(n, m) = iz o

0 else.

22 In general, a wildcard pattern may only skip an input symbol, if there are still enough input symbols
left for each unfinished item pattern. However, because there are no item patterns in this case, each
wildcard pattern may safely skip arbitrarily many input symbols.

- 64 -

3. Pattern Matcher Theory

Experiments with the actual implementation show that the function steps is a perfect upper
bound for the runtime of the ordered sequence pattern g,. However, to provide a feeling for the
complexity of the matching process, the above function is rather insufficient. So, the following
lemma derives an appropriate complexity class.

Lemma 3.4.1
For any n, m € N, it holds that steps(n, m) € O((m+1)").

Proof (Induction over n)

The case n = 0 is uninteresting, because there is no wildcard pattern available. So, in the fol-
lowing it is assumed thatn > 1.

Base case (n = 1,n = 2):

steps(1, m) = 2m+1 + Z steps(0,i) = 2m+1 € O(m+1).
i=0o _ o

steps(2, m) = 2m+1 + Z steps(1, 1)
=0 _9i

= 2m+1 + (m+1) + 2)i

i=0
= 2m+1 + (m+1) + m(m+1) € 0((m+1)?).

= (m+1)*

Induction step: n — n+1 (assuming that the claim holds for all i € N withi < n):

m
steps(n+1, m) = 2m+1 + Z steps(n, 1)
L TP S
=0 g e o+
< g € O((m+1)")

IA

2m+1 + Y, g, ., =2m+1 + (m+1)g ., € O((m+1)""")
i=0 —_

€ o((m+1)™") D

So, the upper bound of the runtime of the ordered sequence pattern g, to match a basic block of
length m is O((m+1)"), whereas O(n!*(m+1)") is the upper bound for the runtime of the
unordered sequence pattern p;.

It seems that due to this upper bound a pattern matcher compiles a basic block with an unac-
ceptable runtime. However, the patterns p, and g, represent a class of patterns that will never
occur in practice. In general, a rule matches a basic block much faster, because its search pat-
tern comprises at most one wildcard pattern. A common search pattern has either the form
Din = {Q1, vy Qiy X, Ais2, ..., An) OF Qin = [a1, ..., Qi, *, Ais2, ..., An], Whereas 1 < i < n-1 (n > 3)
and the a; denote item patterns. Similar as above, the runtime of the pattern p;, can be directly
derived from the runtime of g;,, as follows:

To estimate the runtime of the search patterns p;, and q;, it is assumed that the basic block w
contains enough symbols (i.e., m > n-1), so that both patterns are able to match w. The pattern
gi» matches w in three phases. At first, the item patterns a, ..., a; have to consume an input
symbol, before the inner wildcard pattern may start to match the remaining basic block.

-65 -

Chapter III - Theory

However, the wildcard pattern may only continue to skip input symbols as long as there are at
least k :== n —i — 1 symbols left, so that there is an item pattern for each of the k remaining item
patterns di+z, ..., a,. So, the wildcard pattern only hasj:=m - i -k = m —n + 1 symbols at its
disposal. Thus, the wildcard patterns needs steps(1, j)) = 2m — 2n + 3 operations to process the
j input symbols, whereas the wildcard pattern creates j+1 different alternatives. After the wild-
card pattern is finished, the remaining k item patterns have to match a symbol in each of the
generated alternatives. So, the number of steps the ordered sequence pattern g;, needs to match
the basic block w is determined by the function steps: IN X IN X IN — IN that is defined as fol-
lows:

steps(i,n,m) = i+2m—-2n+3)+ (m —-—n+2)(n—-1-1)
= steps(1, j) =j+1 =k
=nm—im+m+in—n2—i+n+1€O(nm)

So, the upper bound for the runtime of g;, to match the basic block w is O(nm). To determine
the runtime of p;, all possible configurations of the subpatterns of p;, have to be taken into ac-
count. There are (n-1)! different permutations of the item patterns ay, ..., @;, Qi+1, ..., Q. Addit-
ionally, the inner wildcard pattern may appear at n different locations. Based on this data, the
following formula describes an upper bound for p; .:

(n—=1)! % Zn: steps(i, n,m) < (n—1)! % ZH: g

i=1 < g € O(nm) i=1

(n=1)! * ng = n'xg € O(n!'*nm)

As expected, the upper bound for the runtime of the unordered sequence pattern p;, to match
the basic block w is then O(n!«nm). As long as n is small, the runtime of both pattern types is
acceptable in practice, as Section 2.3 of Chapter V shows.

If an ordered sequence pattern only consists of n item patterns, the number of steps to match
the basic block w is obviously bounded by O(n), whereas O(n!) is obviously an upper bound for
a corresponding unordered sequence pattern.

So, the user should employ wildcard patterns sparsely to keep the worst-case processing time of
a pattern matcher as low as possible.

3.4.2. Pattern Matcher

Let w be a basic block of length m € IN and p a profile that contains n € IN different rules. To es-
timate the worst-case runtime of a pattern matcher that uses the profile p to process w, the
number of alternatives, which the rules of p can produce, play an important role. The number
of alternatives that a rule can generate obviously depends on how many unordered sequence
patterns and wildcard patterns its search pattern comprises. The general rule of thumb is: the
less unordered sequence patterns a search pattern contains the more alternatives the search pat-
tern is able to produce. The search patterns s; = {ai, a, as} and s, = {a;, {az, as}}, where the a;
denote item patterns, demonstrate this effect. Although both search patterns have the same size
(number of non-sequence subpatterns), s; is able to generate 3! = 6 alternatives, whereas s
only can create 2!*2! = 4 different alternatives, because the inner unordered sequence pattern
prevents s, from matching every permutation of the a;. In contrast to the unordered sequence
patterns, the more wildcard patterns a search pattern comprises the more alternatives the
search pattern is able to create, whereas the number of alternatives depends both on the basic

- 66 -

3. Pattern Matcher Theory

block length and the number of item patterns that have not yet consumed an input symbol, as
the previous section shows. So, the number of alternatives, which a rule can generate, depends
on the size of the search pattern and the length of the basic block. In the following, k € IN ab-
breviates the maximum number of alternatives, which the rules of the profile p are able to cre-
ate when matching the basic block w.

By means of the size of the input basic block m, the number of available rules n, the maximum
number of alternatives k and the function f that represents an upper bound for the runtime of
each rule (see Section 3.4.1), the remainder of this section assesses the worst-case runtime of
the four processing methods (see Section 3.3.1 and 3.3.2).

» Single-pass, local cost minimum

Under the assumption that it is not necessary to backtrack, the pattern matcher com-
piles the basic block as follows. At first the n rules have to match the remainder of the
basic block. Then, the pattern matcher determines the cheapest alternative by sorting
the k maximum possible alternatives (the actual implementation uses of the heap sort
algorithm that sorts the alternatives in O(klog(k))). In the worst case, the cheapest al-
ternative removes only one symbol from the basic block, so that the pattern matcher has
to repeat the procedure until no more input symbols are left. So, the following formula
represents an upper bound for this processing method.

Y. (nf + klog(k))

i=1

mnf + mklog(k) € O(mnf + mklog(k))

nf +klog(k) + nf+klog(k) + ...

m times

If the pattern matcher always has to backtrack, this processing methods becomes very
expensive. In addition to the above procedure, the pattern matcher has to investigate
each of the k alternatives, after the pattern matcher has sorted the alternatives. Under
the assumption that each alternative only removes one input symbol from the basic
block, the following formula describes an upper bound for this processing method.

m

D> K (nf + klog(k))

i—
. ——

nf +klog(k) + k(...)
m times (recursive) i=1 <K

i kK" '(nf + klog(k))

i=1

= mnfk™" + mk™og(k)) € O(mnfk™ " + mk™log(k))

IA

» Single-pass, global cost minimum

An upper bound for the single-pass processing method that determines the global cost
minimum can be directly derived from the previous runtime analysis. This processing
method compiles a basic block investigating all available alternatives to compute the
global cost minimum. Apart from sorting the alternatives, the processing method be-
haves as the single-pass processing method that always has to backtrack. The following
formula represents an upper bound for this processing method.

m

Tlf + k(nf + k()) = Z nf ki_l < Z nfkm_l — mnfkm—l = O(mnfkm—l)
m times (recursive) i=1 ;;;:j 1 i=1

-67 -

Chapter III - Theory

+ Multi-pass, local cost minimum

Basically, this processing method acts like the single-pass processing mode, whereas it
does not remember any previously generated alternative,because backtracking is not re-
quired, and it might process the basic block multiple times. Note that the algorithm first
tries to match every symbol of the input basic block, before the algorithm decides to re-
start the matching. So, the runtime of one iteration corresponds to the runtime of the
single-pass processing method (without backtracking).

How often this processing method iterates, obviously depends on the given basic block
and the used profile. Unfortunately, there exists no universal formula that estimates the
maximum number of iterations. Even though it is possible to determine the maximum
iteration count for special profiles®, there is no applicable restriction that helps to estim-
ate the number of iterations in the general case.

The following formula represents an upper bound for the runtime of this processing
method, whereas [€ IN with [> 1 denotes the maximum number of iterations.

nf+klog(k) + ...

Im times

Im
2. (nf + klog(k))

Imnf + Imklog(k) € O(Imnf + lmklog(k))

+ Multi-pass, global cost minimum

This algorithm optimises a basic block like the multi-pass processing that determines the
local cost minimum. Instead of sorting the generated alternatives, this algorithm invest-
igates each alternative to determine the global cost minimum. Because this processing
may restart the matching in each of the generated alternatives, this algorithm is the
most expensive one. As previously, it is not possible to determine the maximum number
of iterations for an arbitrary basic block and profile.

The following formula represents an upper bound for this multi-pass optimisation al-
gorithm, whereas € IN with [> 1 denotes the maximum number iterations.

Im m

nf +k(nf + k(..)) = >, nf k' 3 !

i=1 i=1

Imnfk™ ' € O(Imnfk™ ")

IA

Im times (recursive) < K™t

It turns out that the single-pass processing method that compiles a basic block with respect to
the local cost minimum is — as expected — the cheapest pattern matcher processing method. If it
is not necessary to backtrack, this processing method is linear in the basic block length and the
number of rules and logarithmic in the number of alternatives. However, if the pattern matcher
is forced to backtrack all the time, this single-pass processing method is exponential in the num-
ber of alternatives and is thus even more expensive than the single-pass processing method that
determines the global cost minimum. This relationship does not apply to the two multi-pass
processing methods, because the pattern matcher does not need to backtrack, if no rule matches
the basic block while optimising a basic block. Being exponential in the number of alternatives,
the multi-pass processing method is most expensive.

23 If e.g., the rules' replace patterns create instructions that none of the used search patterns are able to
match, this processing method will iterate at most 2 times.

- 68 -

3. Pattern Matcher Theory

So, the user should select the processing mode carefully, so that the pattern matcher does not
take too long to compile or optimise a basic block. As Chapter V demonstrates, it does not al-
ways pay off to determine the global cost minimum.

- 69 -

Chapter IV - Pattern Matcher Generator

IV. Pattern Matcher Generator

Discussing the functioning of the pattern matcher generator tpmg and the generated pattern
matchers, this chapter presents the practical main part of the present work. After the first sec-
tion gives an insight into the tpmg implementation, the second section introduces the pattern
matcher description language, in which the user can specify any kind of pattern matcher. The
third section discusses the differences between the implementation of the tpmg-generated pat-
tern matchers and the pseudo-code realisation (see Chapter III). Briefly introducing the tpmg
debugger interface, the fourth section concludes this chapter.

1. Overview

The acronym tpmg means tree pattern matcher generator. Although the pattern matchers do
not operate on tree-like structures, I have chosen this name, because every instruction can be
understood as a minimal expression tree, whose root is the target register (or variable) and
whose leafs are the operands. Using appropriate side conditions, a pattern matcher is able to
match arbitrarily large expression trees, whereas it is not required that the instructions are
stored in tree-like data structures.

Figure IV.1 shows the corresponding expression tree that the optimisation rule mad matches
(see Example .6 in Chapter III). Remember that the rule searches two instructions — that not
need to be adjacent to each other — where the operand and the target of the ADD instruction is
the target of the MUL instruction.

Figure IV.1: Expression tree.

I have implemented the pattern matcher generator tpmg in the C** programming language, us-
ing the scanner generator flex [38] and the parser generator bison [39] to realise the tpmg
front end. Besides making use of the standard template library (STL [40]), the application does
not depend on any other external library, so that tpmg is available on almost every platform. To
ease the understanding of the tpmg implementation, I have annotated the code, as well as the
tpmg-generated code, with doxygen meta tags [41]. To automatise the build process, the pro-
ject makes use of autoconf [42] and automake [43] that are known to work on various plat-
forms. I have successfully compiled tpmg on Linux, NetBSD and Windows XP (using mingw).

The purpose of tpmg is to compile a pattern matcher description into an automated, retarget-
able pattern matcher. Currently, tpmg only generates C** pattern matchers that are build on top
of the tpmg template library that makes use of the STL*. The template library defines the ne-
cessary data types (e.g., ItemPattern, SequencePattern or Rule) and implements the basic pat-
tern matcher functionality. Although this approach requires the used C** compiler to support

24 Of course, any other data structure library with similar features suffices.

- 70 -

1. Overview

templates and unfortunately causes longer compile times, the major advantage is the type
safety at compile time. So, this approach overcomes the ugliness of a pure C implementation,
where instruction objects would have to be passed as function parameters of type void*. Inde-
pendent from the C*" template support, the compiler is additionally required to provide
runtime type information (RTTI) of the processed instruction objects. With RTTI, a pattern
matcher does not require an external mechanism that makes the objects to match distinguish-
able from each other. So, the pattern matcher does not require that the objects to process imple-
ment an interface in advance. However, to enable the generated pattern matchers to make use
of the STL, the objects to match have to be instances of a common base class. A pattern matcher
receives the input basic block to compile or optimise in form of a std: : 1ist over that common
base class (e.g., if the common base class is Instruction, std::1list<Instruction> must be
the type of the basic block). After having processed the basic block, the pattern matcher returns
the compiled (or optimised) basic block or throws an exception to report an erroy, if e.g., a cer-
tain instruction object could not be matched. Because the tpmg-generated pattern matchers
only depend on the STL, they can be compiled on almost every platform. Like tpmg, I have suc-
cessfully tested tpmg-generated pattern matchers on Linux, NetBSD and Windows XP

The tpmg back end can be adjusted to any other object orientated programming language, as
e.g., Java, if the target language provides the following features:

+ RTTI support to distinguish the processed objects during runtime,
« Template support (or a similar mechanism) for type safety at compile time,
« Exception handling®,

+ Available data structure librarylike STL.

Independent from the target language, creating and embedding a tpmg-generated pattern
matcher in an application always takes place according to Figure IV.2. At first, the user has to
describe the pattern matcher in a tpmg rule file. The user may chose to outsource parts of the
rule file (e.g., a profile or just a single rule) in auxiliary rule files, to keep the pattern matcher
description readable and — more important — maintainable. The format of a rule file is determi-
ned by the pattern matcher description language (see Section 2). Next, tpmg parses and valid-
ates the input rule file(s) to generate the pattern matcher. Before the application can be finally
compiled, the user has to make sure that the application uses of the pattern matcher through
the generated interface. Thus, the user obviously has to implement the application in the same

language as the tpmg-generated pattern matcher
tpmg Pattern C++ L
Rule File tpmg Compiler Application
Application
Code

O Code/Application
D Compiler/Library :
tpmg

— Input/Output Template
- Usage Library

Figure IV.2: tpmg compilation diagram.

25 Exceptions are not truly required to implement the pattern matchers, but offer a much nicer way to
report errors without having to encode an error in the return value of the affected functions.

-71 -

Chapter IV - Pattern Matcher Generator

2. Pattern Matcher Description Language

The pattern matcher description language orientates itself at the bison grammar and adopts
language constructs of recent object oriented programming languages, such as Java and C**. In-
stead of creating a completely new syntax, I have chosen to combine well-known languages in
this description language, so that a new user finds himself in a familiar environment and can
start developing right away.

The following sections introduce the syntax and semantics of the pattern matcher description
language. I will use an extended Backus-Naur form to introduce the syntax, whereas upper case
alphanumerical strings denote non-terminals of the grammar Lower case alphanumerical
strings and non-alphanumerical strings enclosed in single quotation marks represent terminal
symbols of the description language. The following four operators extend the standard Backus-
Naur form to make the grammar more easier to read:

« (...) to identify a group of symbols,
+ [...] to denote that the enclosed section is optional,

« * to mark that the preceding symbol (or group of symbols) may appear arbitrarily often
or never,

« " to indicate that the preceding symbol (or symbol group) must appear at least once.

2.1. Outline

A tpmg rule file contains at least one rule set that may be preceded by a header section.

RULEFILE ([HEADER] RULESET)*

HEADER "${' ASCII* '3}’

In the header section, the user has to define the types of the instruction objects on which the
pattern matcher operates. Because every language construct of the target language (i.e., C** in
this case) is allowed within the header section, the user can additionally specify own data types,
functions or global variables, which the generated pattern matcher can access. The user may
even implement the whole application that makes use of the pattern matcher in the rule file
header. However, I strongly advice against doing so in practice, to keep the project maintainable
in the long run. Figure IV3 shows a typical header section.

%{
// include header files to define data types
#include <custom types.h>

// embedded function
bool valid (UnaryInstruction *instruction)

{
}
// global variable

static int flag = 0;
%}

Figure IV.3: Typical rule file header section.

- 72

2. Pattern Matcher Description Language

Note that tpmg does neither validate the contents of the header section nor evaluate the pre-
processor statements inside the header section. This has to be done by the C** compiler later
on.

After the header section, follows the rule set section that contains the representation of the pat-
tern matcher. In that section, the user specifies the common base class of the instruction objects,
the profiles and the rules that constitute the pattern matcher. Section 2.2 further discusses the
syntax and semantics of the rule set.

A rule file may contain multiple header and rule set sections. However, a header must always
precede a rule set and there may be at most one header per rule set. After the tpmg front end
has processed the rule file, tpmg merges all headers and rule sets, so that the user can out-
source the pattern matcher description in multiple rule files.

Comments may appear everywhere within a rule file. A line starting with // denotes a single-
line comment, whereas /* ... */ encloses a multi-line comment.

Additionally, the user may use certain preprocessor statements known from C and C** re-
spectively. The pattern matcher generator contains its own preprocessor that understands the
following subset of preprocessor statements:

« The statement #include “FILENAME” commands tpmg to open and process the given
file — with respect to the current working directory and the parser status — before the
pattern matcher generator may continue with the current file. If the file could not be
found, tpmg tries to locate that file in search paths that the user has provided. If the file
could not be found at all, the pattern matcher generator stops immediately.

« In contrast to the above statement, the #include <FILENAME> statement commands
tpmg to only locate the specified file in the user-provided search paths.

« The user may define a variable with #define VARIABLE. In contrast to other prepro-
cessors, defined variables do not have a value. The main purpose of variables is to make
include guards possible. With the #undef VARIABLE statement, the user can undefine a
previously defined variable.

« To hide specific parts of the rule file from tpmg and the internal preprocessor, the user
may use the #ifdef VARIABLE, #else and #endif statements. An #ifdef marks the
beginning of a guarded section that must be terminated by an #endif. If the specified
variable is not defined, the guarded section will be hidden and is visible otherwise. The
user can achieve the opposite behaviour with the #ifndef VARIABLE statement. The
#else statement, which may only appear between #ifdef (or #ifndef) and #endif,
makes it additionally possible to make a partition of the guarded area visible while the
other one is hidden and vice versa.

To prevent a file from being included twice, the user must guard the file contents as
follows:

#ifndef UNIQUE IDENTIFIER
#define UNIQUE IDENTIFIER

#endif

-73-

Chapter IV - Pattern Matcher Generator

2.2. Rule Set

A rule set contains the complete specification of a pattern matcher, which is defined through the
common base class of the input alphabet, the common base class of the output alphabet and the
rules and profiles for each supported hardware architecture. Additionally, a rule set determines
the implicit behaviour of the generated pattern matcher

RULESET RULESET HEADER RULESET BODY

RULESET HEADER ::= ruleset '<' CLASSNAME ',' CLASSNAME '>'

RULESET BODY '{' [IMPLICIT] (RULE | PROFILE)* '}’

The first class name of the rule set header denotes the input base class that determines the input
alphabet. The input base class is the common base class of all instruction objects that may ap-
pear in an input basic block. Thus, the input alphabet implicitly contains the input base class
and all other classes that are derived from that input base class. The second class name determ-
ines the output base class and the pattern matcher's output alphabet analogously. If the two
base classes differ from each other, the generated pattern matcher can only offer the single-pass
basic block processing methods® (see Section 3.3.1 in Chapter III). Thus, the pattern matcher
can only be employed in the code generation. Otherwise, the pattern matcher is additionally
able to optimise basic blocks with the multi-pass processing methods.

The main rule set is the first rule set that tpmg processes. The pattern matcher generator will
append any other rule set to main rule set, if the input and output class match the input and
output class of the main rule set. As tpmg is not able to detect class relationships, the class
names must be exactly the same. Otherwise, tpmg will stop, reporting that the rule set could
not be appended to the main rule set.

It appears that there is a major difference between the formal pattern matcher description and
the pattern matcher description language. In contrast to the profiles of a formal pattern match-
er, every profile of a tpmg-generated pattern matcher must operate on the same input and out-
put alphabet. However, this restriction does not diminish the expressive power of the descrip-
tion language. So, if the application uses different instruction classes for each supported hard-
ware architecture, these classes simply have to share a common base class, so that the pattern
matcher is able to generate instruction sequences for each target platform.

The rule set body comprises the rules and profiles of the pattern matcher Besides the user-spe-
cified profiles, a rule set implicitly contains the global profile that combines all those rules that
do not belong to a specific profile.

As hinted in Example .6 in Chapter III, tpmg creates rules that implicitly check for side effects
that might cause the pattern matcher to wrongly modify the semantics of the processed basic
block. However, because tpmg does not know the environment, in which the generated pattern
matcher will be employed, the pattern matcher generator will only insert a function call. If
those side effects can occur, the user has thus to specify the verification function in the implicit
section that precedes the rule and profile definition.

26 This is not quite true. If the input base class is derived from the output class, the input alphabet 3,
is a subset of the output alphabet . In that case, the pattern matcher is able to optimise any input
basic block. Because the pattern matcher simply skips any instruction object that cannot be optim-
ised, the pattern matcher will not cease to function, if it ever encounters an instruction object whose
class is contained in Y.\ X However, due to restrictions of the C** template mechanism and the
pattern matcher generator's inability to detect such class relationships, tpmg cannot support this spe-
cial kind of optimisation pattern matcher.

- 74 -

2. Pattern Matcher Description Language

2.2.1. Profile

Profiles enable the user to combine rules that are dedicated to a certain kind of problem. De-
pending on the desired outcome, an application, which makes use of a pattern matcher; first has
to select the appropriate profile, before the generated pattern matcher can start to process the
input basic block. In general, a profile combines rules that are related to a specific target archit-
ecture.

PROFILE PROFILE HEADER PROFILE BODY

PROFILE HEADER :: profile PROFILENAME [PROFILE EXTEND]

PROFILE EXTEND ::= ':' extends PROFILENAME [',' PROFILENAME]*

PROFILE BODY =';'" | '{" (RULE | RULE_OMIT)* '}’
RULE_OMIT = omit RULE ID [',' RULE_ID]* ';'
RULE_ID = [[PROFILENAME] '::'] RULENAME

The name of a profile must be unique and must not be the empty word. In every profile — this
includes the global profile as well — the name of a rule may only occur once. So, there may be a
rule named add in the NV30 profile as well as in the NV40 profile, but there may not be a
second rule called add in any of the two profiles.

Each profile automatically derives from the global profile and thus inherits all rules of the glob-
al profile. A profile will even inherit those rules of the global profile, that have been specified
syntactically after that profile. The user may additionally derive a profile from multiple other
profiles, so that the user does not have to implement a rule twice that two profiles have in com-
mon. Deriving from the same profile more than once is not an error and does not cause the new
profile to contain the rules of the derived profile multiple times. Because the profile body may
be empty, the user can easily create aliases of profile in that way. The pattern matcher generator
does not support profile forward declarations. So, if the user attempts to derive a new profile
from an unknown profile, or a profile that has not been processed, tpmg stops with an appro-
priate error message. Additionally, tpmg does not support nested profiles.

Whenever a profile inherits rules from other profiles, the user might want to prevent certain
rules from being included in the new profile, if they are no longer required. At every position
within the profile specification, the user can exclude any number of rules from the profile using
the omit keyword. If the user attempts to omit a rule that does not exist, tpmg stops with an
appropriate error. Because a rule name may only occur once per profile, each rule can be
uniquely identified by means of the name of the profile that contains the rule and the name of
the rule. However, depending on the current context, the user does not always have to specify
the exact location of a rule he wants to omit. If e.g., a rule named add only occurs in the NV30
profile, and the user wants to exclude that rule in another profile that derives the NV30 profile,
the name of rule suffices. Otherwise, if the global profile also contains a rule called add, the
user has to provide the exact location of the rule (i.e., ::add for the rule in the global profile and
NV30::add for the rule in the NV30 profile). Note that whenever the user derives a profile from
other profiles, the profile will only inherit the rules that have not been omitted previously.

- 75 -

Chapter IV - Pattern Matcher Generator

2.2.2. Rule

A rule describes asingle step of the code generation or the code optimisation process. To specify
the behaviour of a rule, the user must provide a search pattern to identify the instruction se-
quence that has to be compiled (or optimised), together with certain side conditions that have
to be satisfied before the pattern matcher may apply the rule. Additionally, the user has to spe-
cify the cost function that assigns an integer cost to each generated alternative and the replace
pattern that substitutes the matched instruction sequence.

RULE

RULE_HEADER RULE_BODY

RULE_HEADER ::= rule RULENAME [RULE_EXTEND] [RULE_ MASK]

RULE_EXTEND :: ':' RULE_ID

RULE_MASK 's' '"('" INTEGER ')'

RULE_BODY ::= '{' [SEARCH] [CONDITION] [COST] [REPLACE] '}'

The rule definition is split into the rule header and the rule body. In the rule header, the user
has to specify the name of the rule, which may not occur twice in the profile the rule belongs to,
as mentioned in Section 2.2.1. Additionally, the user can derive the new rule from an existing
rule that must not necessarily be included in the current profile. In contrast to a profile, a rule
may only derive from one rule at a time, because tpmg would not be capable to clearly define
the outcome otherwise. The child rule inherits the search pattern, the global condition function,
the cost function and the replace pattern from the parent rule. If the parent rule does not exist,
tpmg stops with a corresponding error message. Using the inheritance mechanism, the user can
easily create aliases of any previously defined rule. Respecifying a specific property in the rule
body, the user can even override the inherited rule specification. However, when deriving a rule
from another, there are certain constraints the user has to keep in mind. The end of this section
further discusses potential problems that might arise.

In some cases, the user wants to disable a rule right from the start, to prevent the generated
pattern matcher from matching a basic block with that rule, whereas the application should de-
cide during runtime whether the pattern matcher may use this rule. To disable a rule, the user
has to define a bit mask in the rule header. Note that the bit mask may be constant expression.
To re-enable a disabled rule, the application has to provide the pattern matcher with a bit mask,
with which the pattern matcher determines whether a disabled rule may be used®. Using this
mechanism, the user can easily enable or disable whole subsets of a profile.

The rule body specifies the runtime behaviour of the rule, which is determined by the search
pattern, the global condition function, the cost function and the replace pattern. Apart from
minor modifications, the search pattern syntax corresponds to the formal search pattern de-
scription (see Definition .1 in Chapter III).

SEARCH = SEQUENCE
SEQUENCE = '[' SPATTERNS ']'

| '{' SPATTERNS '}’
SPATTERNS ::= [SPATTERN [',' SPATTERN]*]

27 Any rule may be used, if its bit mask either undefined or matches the provided bit mask. If a = 0x01
is a rule's bit mask, and b = 0x11 is the provided bit mask, the pattern matcher will use the masked
rule, because a & b = 0x01 # 0 (& is the binary and operator). If otherwise b = 0x10, the pattern
matcher may not use the rule, because a & b = 0. Note that a rule will be permanently disabled, if its
mask is zero.

- 76 -

2. Pattern Matcher Description Language

SPATTERN = SEQUENCE | ITEM | WILDCARD

ITEM = ('.' | CLASSNAME) ['(' EXPRESSION ')']
EXPRESSION ::= ASCII*

WILDCARD = "%

Because search patterns must contain at least one item pattern, tpmg rejects any rule file that
contains a search pattern that does not satisfy this condition. An item pattern is defined through
the class name of the object instance to match and an optional side condition, which must be a
boolean expression in the target language. To match any object that is an instance of the input
base class, the user may simply provide a . as class name. To keep tpmg as language independ-
ent as possible, tpmg does not verify if the side condition is syntactically or semantically correct
and leaves that to the target language compiler.

With the index of a pattern, the user can access any non-sequence subpattern of a search pat-
tern. Similar to the notation of the bison grammar, $$ represents the current pattern — if applic-
able — and $1i represents the i-th subpattern of a search pattern. If the i-th subpattern is an item
pattern, the expression $i returns the matched instruction object. Otherwise, $i returns the
number of objects that the corresponding wildcard pattern has consumed. However, the user
must not access a pattern, if tpmg detects that the rule might not have matched that pattern at
that point. Additionally, the user must not call any member function that modifies the matched
object, so that the rule does not modify the input basic block. Note that the pattern matcher
generator can only prevent the modification of the input basic block, if the target language
provides a mechanism that marks an object as unmodifiable like the const modifier in C**.

Example 2.2.1

Let X = {A, B} be the input alphabet, where both classes provide the functions isValid and
setValid (the function name represents their purpose). Additionally, let the search patterns s;, s
and sz be defined as follows:

s;=1[A, B ($1->isvalid()) 1]
S2'={ A, B ($1->isvalid()) }

s3:=[A ($$->setvValid(true), true), B ($1->isvalid())]

Each search pattern matches the same instances of the classes A and B (with respect to the
member function isValid), whereas s» does not care about their order of appearance. However,
according to the above constraint, s; is not a valid search pattern. Because s; is an unordered se-
quence pattern, the second item pattern might be the first subpattern of s, that matches an in-
struction object. In that case, the side condition of s,[2] cannot call any member function of the
object that the first item pattern matchers, because sz[1] has not yet matched an instance of A.
So, whenever the second item pattern of s, matches first, it is invalid to evaluate the side condi-
tion of that item pattern. To prevent this kind of error in advance, tpmg rejects any item pattern
side condition that attempts an unsafe pattern access.

Because the side condition of s;[1] modifies the matched object, the search pattern s; is also in-
valid. However, the pattern matcher generator is not able to detect the error, because tpmg does
not collect any data about the capabilities of the instruction objects. Instead, the target lan-
guage compiler will reject the generated pattern matcher, because the side condition of s3;[1] at-
tempts to modify an unmodifiable object.

-77 -

Chapter IV - Pattern Matcher Generator

To minimise the memory usage, tpmg reduces each search pattern to its normal form. If e.g., a
sequence subpattern of a search pattern only comprises one pattern, tpmg replaces the sub-
sequence by the inner pattern. If tpmg encounters an ordered sequence pattern that comprises
at least two consecutive wildcard patterns or an unordered sequence pattern that contains more
that one wildcard pattern during the normalisation process, tpmg rejects the rule file. The pat-
tern matcher generator strictly rejects those search patterns, because on the one hand the ex-
cessive wildcard patterns are redundant, and on the other hand, the more wildcard patterns a
search pattern consists of, the longer it takes to match the pattern, as Section 3.4 in Chapter III
discusses®®. By means of several search patterns, the following example demonstrates the norm-
alisation process.

Example 2.2.2

Let > = {A, B, C} the input alphabet. The following search patterns are either invalid or valid
and can be normalised or not:

« The following search patterns can be normalised, as they consist of sequences that only
comprise a single pattern (which may even be a sequence pattern itself).

s=1[4a, [B], C]

t=1[A, {B}, C]

It turns out that the search patterns s and t represent the same normalised pattern.
normalise(s) = normalise(t) = [A, B, C]
- If an ordered sequence pattern contains another ordered sequence pattern, the inner

pattern is redundant. However, in any other case, tpmg must not flatten any sequence
pattern that comprises more than one subpattern.

s=1[A, [B, C]]
t=[Aa, {B, C}]
u=4{A4, [B, C]}

v={4a, {B, C} }

So, tpmg normalises the search pattern s and does not modify t, u and v.
normalise(s) = [A, B, C]
normalise(p) = p withp € {t, u, v}
« The pattern matcher generator rejects the following search pattern, because the norm-
alised pattern contains two consecutive wildcard patterns.
s=1[[A, x], %, B]

normalise(s) = [A, %, *, B]

28 Why does tpmg reject the rule file at all? Instead, tpmg could simply remove the excessive wildcard
patterns. However, if tpmg would remove a pattern, tpmg would implicitly change the indices of the
remaining patterns. Not to confuse the user with varying indices, tpmg just rejects the rule file.

- 78 -

2. Pattern Matcher Description Language

As tpmg normalises every search pattern, the user does not need to care about the complexity
of the used search patterns. However, tpmg forces the user to use wildcard patterns sparsely, so
that the generated pattern matcher processes basic blocks in an acceptable time.

CONDITION ::= '{' ASCII* '}'
COST ::= '{' ASCII* '}'

The runtime behaviour of the rule is further determined by the global condition function that
must return either true or false and the cost function that has to return an integer value. In ad-
dition to the item pattern side conditions, both functions may access any subpattern of the
search pattern to aid their computation using the above notation. Similar to the item pattern
conditions, tpmg does not verify the syntactical and semantic correctness of these functions.
Again, the target language compiler has to take over this part.

REPLACE ::= '[' [RPATTERNS] ']’
RPATTERNS ::= RPATTERN [',' RPATTERN]*
RPATTERN ::= RGUARD | RITEM
RGUARD ::= if '(' EXPRESSION ')' REPLACE [else (RGUARD | REPLACE)]
RITEM ::= '$' INTEGER [INITIALISERS]
| ITEM [INITIALISERS]
INITIALISERS ::= (':' INITIALISER)*
INITIALISER ::= IDENTIFIER '(' EXPRESSION ')'

The replace pattern determines the final outcome of a rule. In contrast to the formal descrip-
tion, replace patterns are a special kind of ordered sequence patterns that may only comprise
ordered sequence patterns and item patterns. To enable a rule to create different instruction se-
quences, subsequences of a replace pattern may be guarded by side conditions, so that the user
does not have to write a new rule for each possible outcome. So, although replace patterns are
syntactically sequence patterns, they are implicitly functions that generate different sequences
of instructions depending on the current context.

While optimising the input basic block, the user might want to conserve previously matched ob-
jects, so that the rule does not have to allocate a new object instance with the same properties
and to dispose of the matched object. Using the above pattern access notation, the user may
specify the instruction object the rule should preserve and insert in the final basic block. If the
accessed pattern is a wildcard pattern, tpmg rejects the replace pattern and aborts.

To create a new object instance, the user has to specify the class name and the arguments the
replace pattern should pass to the constructor of the class. If the user does not provide any ar-
guments, the replace pattern calls the default constructor of the desired class. To create an in-
stance of the output base class, the user may simply provide a . as the target class name.

Both conserved and newly created objects can further be initialised with a mechanism that syn-
tactically corresponds to the C** constructor initialisation. However, in contrast to specifying
the member variables to initialise, the user has to provide the name of a member function and
the arguments that should be passed to that function. In this way, both the rule file and the ap-
plication code remain readable and maintainable, as the user does not have to realise construct-
ors that can take every possible combination of arguments.

- 79 -

Chapter IV - Pattern Matcher Generator

Example 2.2.3
Let > = {Object} be the instruction alphabet, where the Object class is defined as follows:

class Object

{
public:
Object (std::string name);
void setValue (int value);
int value (void) const;
private:
std::string m_name;
int m value;
}i

Using the above mechanism, the user can then allocate and initialise a new instance of the
Object class with the following replace pattern:

[Object (”a"): setValue (12)]

The generated pattern matcher will then create the new instance as follows:

Object *instance = new Object (“a”);
instance->setValue (12);

In addition to the subpattern access, the user may also access both conserved and newly alloca-
ted object instances from within a replace pattern using the same notation. The index of an ob-
ject instance is determined by the position within the replace pattern — analogously to the
search pattern indices — disregarding the subsequence side conditions. To distinguish accesses to
the search pattern from access to the replace pattern and to be able to access the search pattern
from within the replace pattern, the indices of the subpatterns of the replace pattern start with
j+1, iffj is the largest indexthat occurs in the search pattern.

Example 2.2.4

Let the Object class be defined as in Example .3, and s be the search pattern and r be the replace
pattern that are defined as follows:

§ = [Object]

r: [Object (*a"),

Object (“b"): setValue ($1->value()+$2->value())]

After the rule has finished to match the basic block, the replace pattern creates two object in-
stances. When the generated code allocates the second object, it initialises the value of that
object with the sum of the value of the matched item ($1) and the value of the first allocated
object ($2).

Because subsequences within an replace pattern may be guarded by side conditions, it is con-
sequently not always safe to access an object from such a sequence. If a rule would use the fol-
lowing replace pattern r', the generated pattern matcher could terminate abnormally.

\l

r = [if ($1->value() > 0)
[Object (“a") 1,
Object (“b"): setValue ($1->value()+$2->value())]

- 80 -

2. Pattern Matcher Description Language

If the value of the matched object ($1) is not positive, the replace pattern does not create the
first object of the replace pattern. In that case, the object $2 is undefined and the call to the
member function value causes an invalid memory access. Although such an access is generally
unsafe, tpmg does not forbid unsafe object accesses, because tpmg is not able to determine
whether an invalid access will occur or not. Instead, tpmg only warns about possibly unsafe ac-
cesses and generates code that detects those accesses during runtime and that throws an excep-
tion to enable a controllable program termination. Providing tpmg with a special command line
parameter, the user can disable this runtime access verification.

Note that the four rule properties are optional. Except for the global condition function®, the
user must specify the search pattern, the cost function and the replace pattern. If at least one of
these properties is undefined, the specified rule is virtual and cannot be used by the pattern
matcher. Although such a rule appears to be useless on its own, the rule can still serve as as a
template from which the user can derive new rules that implement the missing properties.

As hinted at the beginning of this section, the user has to keep certain constraints in mind,
when deriving rules from another. The following example demonstrates the two common pit-
falls that might occur.

Example 2.2.5

Let Xin = {A, B} be the input alphabet and X, = {C, D} be the output alphabet, whereas A is
the input base class and C the output base class. It is assumed that every class, except A,
provides the member function check that returns a boolean value. Furthermore, it is assumed
that the user hasdefined the rulebase as follows:

rule base

{

search:

[A
replace: [C

B]
r D]
The rule base matches the object sequence AB and translates that sequence into the target al-

phabet sequence CD. Because the cost function is not defined, the rule is virtual and will thus
not be used during runtime. Instead ofrefining the rule base, the user specifies other rules:

+ First, the user derives the rule first, that implements the global condition function and
the cost function. In contrast to the rule base, the rule first only accepts those object
sequences AB, where the member function check of the matched B returns true:

rule first : extends base

{
condition: { return $2->check(); }
cost: { return 2; }

As every instance of the class B provides the member function check, it is valid to derive
the rule first from the rule base in this way. Additionally, the pattern matcher can make
use of the rule first, because the user has specified all required properties.

29 If the user does not provide a global condition function and the rule does not inherit the condition
function from another rule, tpmg assumes that the global condition is always true.

- 81 -

Chapter IV - Pattern Matcher Generator

Furthermore, the user derives the rule second from the rule first and replaces the inheri-
ted search pattern as follows:

rule second : extends first

{

search: [A]

}

However, the derived rule is not valid, because the global condition function accesses
the second pattern of the search pattern, which only contains one item pattern in this
rule. So, tpmg rejects the rule file and reports that the global condition function of the
rule second cannot access the pattern that $2 denotes. Thus, the user also has to over-
ride the inherited gbbal condition function to make the rule definitionvalid.

Instead, the user modifies the rule second so that the search pattern matches two in-
stances of the class A:

rule second : extends first

{
search: [A, A]

}

On the first look, this rule definition appears to be valid, because the global condition
function is now able to access the second subpattern of the search pattern. However, be-
cause the class A does not provide the member function check, the target language com-
piler will not compile the generated pattern matcher. Unfortunately, tpmg is not able to
detect this kind of error, because the pattern matcher generator lacks the necessary in-
formation. Instead, tpmg can only warn the user that the pattern denoted by $2 is not of
the expected type B.

Finally, the user defines the rules third and fourth. The rule third derives from the rule
first, and modifies the inherited replace pattern such that the allocated instance of the
class C is passed to the constructor of the class D. The rule fourth inherits the properties
from the rule third and overrides the search pattern such that it accepts the object se-
quence ABB:

rule third : extends first

{
replace: [C, D ($3)]
}
rule fourth : extends third
{
search: [A, B, B]
}

Because the rule third derives from a valid rule and its replace pattern is also valid,
there is nothing wrong with that rule. The interesting question is now, which object in-
stance is passed to the constructor of the class D, when the pattern matcher applies the
rule fourth. According to the semantics of the $ operator, the user would expect that the
second instance of the class B, which the search pattern of the rule fourth matches, is
passed to the constructor. If so, the search pattern would implicitly modify the inherited

-82 -

2. Pattern Matcher Description Language

replace pattern, which contradicts the common notion of inheritance®*. However, as
tpmg knows that the pattern denoted by $3 belongs to a different context, in which the
search pattern only comprised two objects, tpmg associates the pattern access with the
correct object instance. Thus, if the user overrides the search pattern, tpmg does not re-
quire the user to respecify the inherited replace pattern, if the replace pattern contains
inter-pattern accesses.

The rule inheritance is a powerful mechanism that enables the user to define the behaviour of
the generated pattern matcher on a very high level of abstraction. So, the user no longer has to
cope with the actual matching. Instead, the user simply has to identify the instruction patterns
the pattern matcher has to replace.

However, besides the rules and the profiles, the user has to implement certain functions the
generated pattern matcher implicitly calls during the matching process. The following section
discusses why these functions are required and what they are used for.

2.2.3. Implicit Functions

The implicit section of the rule set contains the definition of three functions, of which the pat-
tern matcher makes use while processing a basic block. Depending on its mode of operation,
the generated pattern matcher does not require the user toimplement each implicit function.

IMPLICIT = implicit '{' [CONDITION] [COPY] [POSTPASS] '}'
COPY = copy '{' ASCII* '}'

CONDITION ::= condition '{' ASCII* '}’

POSTPASS = postpass '{' ASCII* '}’

To ensure that the pattern matcher does not generate invalid code, the pattern matcher first
calls the implicit condition function, before the generated pattern matcher may apply a rule,
whose search pattern contains at least one wildcard pattern. Example .6 demonstrates the
necessity for the implicit condition function.

Example 2.2.6

Let 3 = {ADD, MUL, MAD} be the instruction alphabet, where the instructions ADD, MUL and
MAD and the rule mad are defined according to Example .6 in Chapter III. Remember that each
instruction has a target register, a first and a second operand. The MAD instruction additionally
has a third operand. Under the assumption that the constructor of each instruction class takes
these properties as arguments, the tpmg implementation of the rule mad looks like the
following.

rule mad
{
search: [MUL,
*,
ADD ($$->target == $1l->target && $$->first == $1->target)]
cost: { return 1; }

replace: [MAD ($1->target, $1->first, $1->second, $3->second)]

30 This means that an inherited property remains unmodified unless it has been explicitly overridden.

- 83 -

Chapter IV - Pattern Matcher Generator

The rule mad tries to detect a MUL and an ADD instruction, where the target and the first op-
erand of the ADD instruction equals the target of the MUL instruction, so that both of them may
be combined to a MAD instruction. However, as Figure IV.4 shows, this side condition is too
weak and does not prevent an invalid optimisation.

Input Basic Block: Invalid Optimisation: Valid Optimisation:

Figure IV4: Invalid and valid optimisation of the input basic block.

Being applied to the input basic block, the search pattern produces two alternatives, whereas
one alternative matches the first and the last instruction, and the other alternative matches the
first two instructions. Thus, the pattern matcher can choose between two possible optimisations
of the input basic block. However, the first optimisation is not valid, because the optimisation
modifies the semantics of the input basic block. At the end of the optimised basic block, the
value of the register b is 3*b + 18. Instead, the value of that register should be 3*xb + 9. What
went wrong?

After the pattern matcher had chosen the first alternative of the rule mad, the pattern matcher
has virtually pushed the last instruction behind the first instruction, before the pattern matcher
has applied the rule mad, which replaced both instructions with a MAD instruction. However,
because the instructions on the path between the first and the last instruction both read and
write the target register of the last instruction, the pattern matcher may not push that last in-
struction upwards. So, to rule out invalid alternatives, the rule mad also has to check, whether
the instructions on the path between two matched instructions read or write the target register
of the matched ADD instruction. Thus, only the second alternative is valid for the given input
basic block.

Every rule that contains at least one wildcard pattern has to verify this special side condition. To
prevent that the user forgets to specify this side condition and thus causes the generated pattern
matcher to create invalid code sequences, the pattern matcher implicitly calls the condition
function, whose purpose is to check whether instructions may be pushed upwards. The para-
meter of this function is a sequence of item and wildcard patterns in their order of occurrence
in the current alternative. Before the pattern matcher inquires the global condition function of a
rule, the pattern matcher first checks the implicit condition. If the user has not specified the im-
plicit condition function, the pattern matcher assumes that this special side condition is always
true.

In contrast to the implicit condition function, a pattern matcher only makes use of the copy and
the postpass function, while optimising a basic block. The generated pattern matchers are de-
signed to work hand in hand with a program analysis. To keep the program analysis data up to
date, the program analysis has to be rerun after the pattern matcher has applied a rule while
optimising a basic block. Thus, after applying a rule, the pattern matcher calls the postpass
function, which receives a reference to the current basic block, so that the program analysis can
be restarted.

-84 -

2. Pattern Matcher Description Language

To determine the global cost minimum while optimising a basic block, the pattern matcher has
to investigate every possible alternative. Additionally, the pattern matcher has to create copies
of the input basic block, so that the pattern matcher is able to compare the total cost of every
alternative. Because a rule does usually not affect the whole basic block, the copies of the input
basic block will share some instruction objects. To prevent that a rule disposes an object that
several copies of the input basic block contain, the pattern matcher has to keep track of the
number of basic blocks that share a specific object (reference count). Thus, a rule may only de-
lete an object, if only one basic block contains that object. However, because the pattern match-
er is supposed to work together with a program analysis, the reference count does not suffice,
and the pattern matcher must additionally create copies of each instruction object, under the
assumption that the used program analysis associates its data with the instruction objects. For
that reason, the user has to specify the implicit copy function, if the pattern matcher should de-
termine the global cost minimum while optimising a basic block. Example .7 shows why the
pattern matcher has to copy the instruction objects as well.

Example 2.2.7

Let 3 = {ADD, MUL, MAD} the instruction alphabet, where ADD, MUL and MAD are defined as
in Example .6. The used pattern matcher optimises basic blocks over 3 and works hand in hand
with a program analysis that computes the used definition sets for every instruction. To
distinguish the instruction objects from each other, every instruction object has a unique identi-
fication number. For every instruction object i € IN, ud(i) < IN denotes the set of objects, whose
target is an operand of the instruction object i.

Figure IV.5 shows the beginning of a basic block and two possible optimisations. Before the pat-
tern matcher starts to optimise the given basic block, the used definition sets are defined as fol-
lows: ud(1) = B (the definition of a is unknown), ud(2) = {1} and ud(3) = {2}. There are two
possible optimisations: The first optimisation modifies the first instruction and removes the
second instruction, whereas the second optimisation combines the first and the second instruc-
tion to a MAD instruction. To compute the global minimum, the pattern matcher investigates
both alternatives. At first, the pattern matcher copies the input basic block and removes the
second instruction. The postpass function restarts the program analysis and sets ud(3) = {4}.
Next, the pattern matcher applies the second optimisation and replaces the first two instruc-
tions with a MAD instruction. Then, the postpass function restarts the program analysis again
and sets ud(3) = {5}.

So, the program analysis does not know that the third instruction is contained in two different
basic blocks. For that reason, it is necessary that the pattern matcher creates copies of the in-
struction objects to synchronise the program analysis data with the generated basicblocks.

Input Basic Block: First Optimisation: Second Optimisation:

v

Figure IV.5: Different valid optimisations of the input basic block.

-85 -

Chapter IV - Pattern Matcher Generator

3. Generated Pattern Matcher

As hinted at the beginning of this Chapter in Section 1, the pattern matcher generator only cre-
ates C** pattern matchers that depend on the STL and the tpmg template library. Thus, reading
a rule file, tpmg compiles the specified pattern matcher into a C** pattern matcher class. The
pattern matcher generator puts the generated class into a custom namespace, to avoid name
conflicts with the template library or the application, in which the pattern matcher will be em-
bedded.

Creating a class for each rule, tpmg maps the rule inheritance on the class inheritance mechani-
sm of C**, so that tpmg does not have to specify inherited properties of a rule twice. The pat-
tern matcher generator does not explicitly create the predicate object automaton for each
search pattern. Instead, the tpmg template library provides the mechanism to simulate the cor-
responding predicate object automaton (see Section 3.1 in Chapter III), so that tpmg only has
to specify the search pattern. Using the tpmg template library, the user can even create custom
pattern matchers without tpmg. However, implementing a pattern matcher in the description
language is much more comfortable.

In contrast to the rules, tpmg does not represent profiles as classes. Instead, tpmg just creates a
special initialisation function with which the application can specify the profile the pattern
matcher should use. If the pattern matcher does not support the desired profile, the function
throws an appropriate exception. Otherwise, the initialisation function allocates the required
rules.

Depending on the input base class and output base class, the generated pattern matcher offers
either two or four different basic block processing methods (see Section 3.3.1 and 3.3.2 in
Chapter III). Independent of the used processing mode, the generated pattern matcher aborts
processing the input basic block with an exception, if the pattern matcher cannot process the
basic block any further The thrown exception contains a reference to the object from which the
processing could not be continued. If any rule tries to access a replace pattern that has not been
allocated, the pattern matcher aborts the computation with another exception to prevent an in-
valid memory access (see Example .4 in Section 2.2.2). The exception reports the index of the
pattern and the line of the rule file, fom where the invalid access has been attempted.

The C** implementation of the four basic block processing modes does not differ greatly from
the pseudo-code implementation of Section 3.3.1 and Section 3.3.2 in Chapter III. In fact, the
implementation of the two single-pass processing methods corresponds exactly to the pseudo-
code realisation. On the contrary, the multi-pass processing functions differ from the theoretical
implementation. While optimising a basic block, the generated pattern matcher does not com-
pare the input basic block with the optimised basic block to determine whether to stop pro-
cessing the basic block. Instead, the pattern matcher continues as long as the pattern matcher
can apply at least one rule. However, this different behaviour might cause the pattern matcher
to loop endlessly, if the pattern matcher is able to repeatedly apply a specific sequence of
rules®’. So, to prevent an endless loop, the user can additionally specify the maximum level of
recursion that may occur while optimising a basic block.

Before embedding a generated pattern matcher in the application, the user has to ensure that
the application satisfies certain prerequisites — discussed in Chapter V — that are required, so
that the application works hand in hand with the generated pattern matcher.

31 In that case there must be flaw in the used profile. If the pattern matcher can apply a specific se-
quence of rules over and over again, the used rules do not seem to optimise the basic block at all.

- 86 -

4. Debugger Interface

4. Debugger Interface

To understand how the generated pattern matcher processes its input, the user can make use of
the tpmg debugger interface that is also part of the tpmg template library. The user simply has
to derive a new class from the tpmg debugger class and pass an instance of that class to the
generated pattern matcher during runtime. Whenever something interesting happens, the pat-
tern matcher calls the corresponding function of the given instance of the debugger class to in-
form the user about the recent event. Currently, the debugger interface can receive the follow-
ing events:

The event currentRule informs the debugger that a new rule starts to match the basic
block. If the rule has finished, the pattern matcher emits the event finishRule and pro-
duces the event applyRule, when the rule is going to insert the replace pattern in the
basic block.

Whenever a rule produces a new alternative, the pattern matcher generates the event
newAlternative. To indicate which alternative the active rule currently processes, the
pattern matcher produces the event currentAlternative, whereas the pattern matcher
emits the event deleteAlternative to report that the current rule cannot investigate an al-
ternative any further.

Before an item pattern may consume an item of the basic block, the current rule must
first check the side condition of the item pattern. To inform the debugger whether the
side condition is satisfied, the pattern matcher emits the event checkltemPattern. The
event reports the current alternative, the index of the item pattern, the item, which the
item pattern should match, and the result of the item pattern side condition.

The events matchltemPattern and matchWildcardPattern indicate that an item pattern
and a wildcard pattern respectively has matched an item of the basic block. Each of the
two events reports which item has been matched, the index of the pattern and the al-
ternative in which the item has been matched. Whenever, a rule marks a wildcard pat-
tern as finished, the pattern matcher emits the eventfinishWildcardPattern.

If the pattern matcher has finished processing a basic block, the event finishBasicBlock
informs the debugger that the matching has finished and reports the total cost sum of
the applied rules.

-87-

Chapter V - Compiler Integration

V. Compiler Integration

By means of the CGiS compiler, this chapter discusses the necessary steps to integrate a tpmg-
generated pattern matcher into a compiler (or any other application). The first section intro-
duces the prerequisites the compiler's internal architecture has to satisfy, before the user can
start to embed the generated pattern matcher Demonstrating the modifications to the CGiS
compiler and comparing the performance of the generated pattern matchers with the original
code generation and optimisation, the second section concludes this chapter.

1. Prerequisites

If the user wants to integrate a tpmg-generated pattern matcher into a compiler, the compiler
implementation must satisfy four prerequisites. The main prerequisite concerns the program-
ming language, in which the user has realised the compiler, whereas the other requirements are
related to the internal architecture of the ompiler.

« As hinted in Section 1 of Chapter IV, tpmg only generates C** pattern matchers that de-
pend on the tpmg template library. Thus, the user has to implement those parts of the
compiler that communicates with the generated pattern matcher in C**. For the integra-
tion to be successful, the used compiler* must support templates and provide runtime
type information (RTTI) as well. Additionally, the generated pattern matcher depends
on an implementation of the STL.

+ Because the generated pattern matcher expects a basic block as input, the compiler must
represent the program code internally as a basic block control flow graph, or using a
similar representation that makes use of basic blocks. Because the input and output ba-
sic blocks have the type std: : 1ist, the user either has to adjust the internal basic block
representation or has to convert the used representation to and from the expected type.

+ Furthermore, every processed and allocated object must be derived from a common
base class, so that they can be combined in a std::1ist. If the class A is the base class
of the input objects, and the class B is the base class of the output objects, the type of
the input basic blocks is std::1ist<a *>, whereas the type of the output basic blocks
is std::1ist<B *>. The classes A and B must not necessarily be different from each
other.

« Finally, the rules of the generated pattern matcher must have access to the properties of
the matched objects, so that the rules are able to query them while matching a basic
block. To give the rules access to vital properties of the matched objects, the user can
either declare the corresponding member variables as public or declare the rule classes
as friends of the accessed instruction classes. However, the ideal solution to this problem
is to give the rules accessto these properties through special member functions.

Additionally, the rules must be able to create new instruction object instances, because
the pattern matcher would obviously not function otherwise.

If the implementation of the compiler already satisfies the above properties, the user only has to
care about the pattern matcher specification and the integration of the generated pattern
matcher into the compiler.

32 I have successfully tested tpmg-generated pattern matchers with the GNU C compiler (gcc) and the
Microsoft Visual C++ compiler (msvc++).

- 88 -

2. Modifications to the CGiS Compiler

2. Modifications to the CGiS Compiler

To demonstrate the benefit of tpmg-generated pattern matchers, I have extended the CGiS com-
piler by two pattern matchers. The first matcher compiles the abstract representation for the de-
sired target platform, whereas the second matcher optimises the generated code, if possible.

Fortunately, cgisc satisfies most of the prerequisites (see Section 1) in advance, so I mainly had
to cope with the specification of the two pattern matchers. The compiler has been implemented
in the C** programming language and internally represents the input program as a basic block
control flow graph. A basic block is of the type std: :1ist<CirOperation>, whereas the class
CirOperation® is the common base class of all instruction objects. To further differentiate the
abstract representation from the different target representations, cgisc introduces three classes
that are derived from CirOperation:

« All those instruction objects that are used in the abstract representation of the input
program are derived from the class circGisoperation.

+ The class cirGPUOperation is the common base class for each instruction object that
represents an instruction of the target GPU architecture (e.g.,A300 or NV30).

 Finally, each instruction object that represents an SSE operation derives from the class
CirSSEOperation.

Besides specifying the code generation and code optimisation pattern matchers, I additionally
had to adjust several instruction classes, so that the generated pattern matchers are able to ac-
cess important properties of the matched instances of these instruction classes.

2.1. Code Generation

The compiler makes use of several classes that extend the class CirCGiSOperation to create an
abstract representation of the input program. To generate code for the target architecture, cgisc
compiles each instance of these instruction classes into a corresponding sequence of instruction
objects. The compiler uses the following classes to represent an input program:

+ The classes CirCGiSUnOp, CirCGiSBinOp and CirCGiSTerOp represent an unary, a
binary and ternary operations respectively. Each instance of these classes has its own
target register and a fixed number of operands. An instance additionally has a certain
opcode that determines the type of the operation. If e.g., the opcode is OP_UN_NEG the
instance represents an unary negation operation, whereas an instruction object with the
opcode OP_BIN ADD abstracts the addition of two operands.

+ The CGiS compiler represents function parameters with the class CircGisbataInOut.
Each instance owns the corresponding register and knows whether that register may
only be read, only be written, or be both read and written. The class CirGGiSIndex is a
special kind of function parameter that represents the index of a function parameter
that originates from a stream. Instances of the class CirCGisDataComp are necessary, if
the output parameters of a function modify only certain parts of a stream.

+ To abstract accesses to streams, the compiler makes use of the class CirCGiSLookup. An
instance of this class knows which stream to access and in which register to write the
result.

33 The prefix Cir abbreviates CGiS internal representation.

-89 -

Chapter V - Compiler Integration

« For architectures that do not support branching (e.g., NV30 or A300), the compiler
makes use of the classes CirCGiSGuardedAss and CirCGiSSetGuard to realise the if-
conversion (see Figure I1.17). An instance of the class CirCGiSGuardedAss represents
an assignment to a variable that depends on a certain side condition (guard), whereas
an instance of the class CirCGissSetGuard modifies the value of a guard depending on
the value of a specific registet

- If the target architecture supports branching (e.g., NV40), the compiler makes use of the
classes CirCGisIf, CirCGiSElse and CirCGiSEndIf. Although cgisc internally repres-
ents branching with the control flow graph, the compiler needs these classes to generate
the correct GPU code.

« If the target platform additionally supports loops (e.g., NV40), the CGiS compiler ab-
stracts loops and breaks with the classes CirCGiSLoopStart, CirCGiSBreak and
CirCGiSLoopEnd.

Depending on the desired target platform, cgisc compiles instances of the above instruction
classes into sequences of objects that are either derived from the class CirGPUOperation or the
class cirSsSEOperation. Currently, cgisc supports the A300 (in development), NV30 and NV40
GPU architectures and is also capable of generating SSE code. So, the code generation pattern
matcher comprises four profiles. Because the SSE profile is not part of my work, I will only dis-
cuss the GPU profiles in the following.

Each of the abstract representation classes are able to generate a corresponding sequence of
GPU instructions, whereas the above classes allocate instances of the following derivatives of
the class CirGPUOperation to represent the compiled program:

+ The classes CirGPUUnOp, CirGPUBinOp and CirGPUTerOp stand representatively for an
unary, a binary or a ternary operation. Each instance of these classes is determined
through an opcode, a target register anda certain number of operands.

+ Accesses to streams, which are realised using textures on the GPU, are implemented
with instances of the class CirGPUTexfetchOp. An instance of this class knows from
which texture and which coordinate to read the data from and in which register to write
the data.

+ The class cirGPULoopOp represents the start of a loop and thus corresponds to the class
CirCGiSLoopsStart. An instance of this class is defined by the maximum loop count.

« The class cirGPUNullop corresponds to the branch and the remaining loop classes,
whereas the opcode determines the type of an instance of this class. So, if the opcode is
e.g., OP_GPU_TIF, the instance corresponds to an instance of the class cirCGisIf.

The specification of each profile orientates itself strictly at the cgisc code generation method, as
presented in Section 2.2.3 in Chapter II. A GPU profile contains at least one rule for each in-
struction class that is able to generate a corresponding sequence of GPU instructions for the cor-
responding GPU architecture.

The advantages of the pattern matcher are quite obvious. At first, the instruction classes no
longer need to know how to generate code for the desired target architecture, so that their only
purpose is to represent an operation. This automatically leads to the second advantage. If the
compiler should support a new hardware architecture, the user can easily introduce that archi-
tecture by adding a new profile to the pattern matcher’*. Thus, the implementation stays main-
tainable over time, because it is no longer necessary to grindingly modify the code generation

34 Additionally, the user might have to add new instruction classes for the new platform.

- 90 -

2. Modifications to the CGiS Compiler

function for each instruction object. Finally, the compiler is able to generate more efficient code,
because the pattern matcher is able to take the surroundings of an instruction into account, be-
fore creating the corresponding code.

The following example displays an excerpt of the code generation pattern matcher and shows
that the pattern matcher is able to create more efficient code than the original code generation
method.

Example 2.1.1

Let NV30 be the desired target platform. Remember that this hardware architecture does not
support a division operation, but provides the RCP operation that computes the multiplicative
inverse of its operand. There is additionally no way to directly calculate the square root, as the
NV30 only provides the RSQ operation that computes the multiplicative inverse square root of
its operand (see Section 2.2.3 in Chapter II). Thus, the pattern matcher must treat division and
square root specially, by creating an auxiliary RCP instruction. However, if the pattern matcher
encounters a division through a square root, the auxiliary RCP instructions are not required. So,
the NV30 profile contains the following rules®, amongst others:

profile NV30

{
rule binary div
{
search: [CirCGisBinOp ($$->opcode() == OP_BIN DIV)]
cost: { return 2; }
replace: [CirGPUUnOp (OP_GPU RCP, new CirSymReg (TYPE FLOAT),
$1->second_operand()),
CirGPUBinOp (OP_GPU MUL, $l->target(),
$1->first operand(), $2->target())]
}
rule binary div_sqrt
{
search: [CirGPUUnOp ($$->opcode() == OP_UN_SOQRT)),
*,
CirGPUBinOp ((S$$->opcode() == OP_BIN DIV)
&& ($$->second operand() == $l->target())) 1
cost: { return 2; }
replace: [CirGPUUnOp (OP_GPU_RSQ, new CirSymReg (TYPE_FLOAT),
$1->operand()),
CirGPUBinOp (OP_GPU_MUL, $3->target(),
$3->first operand(), $4->target()) 1
}
rule unary sqrt
{
search: [CirGPUUnOp ($$->opcode() == OP_UN_ SQRT)]
cost: { return 2; }
replace: [CirGPUUnOp (OP_GPU RSQ, new CirSymReg (TYPE FLOAT),
$1->operand()),
CirGPUUnOp (OP_GPU_RCP, $l->target(),
$2->target()) 1]
}
}

35 The rules have been simplified a bit to make them easier to read.

-91 -

Chapter V - Compiler Integration

The rules unary sqrt and binary_div implement the original cgisc code generation. Whenever
the pattern matcher encounters an unary square root operation, the rule unary sqrt first creates
an unary operation that assigns the multiplicative inverse of the operand to a new symbolic re-
gister and then creates a auxiliary unary operation that inverts the result of the first one. The
rule binary div functions similarly. Additionally, the profile contains the rule binary div_sqrt
that handles divisions through square roots separately.

Let the function divide be defined as follows:

function divide (in float a, in float b, out float c)
{

c = a/sqrt(b);
}

Not using the code generation pattern matcher, the compiler would generate the following
shader program for the above function:

! 1ARBfpl.0

TEMP A 11, A1l 2;

TEX A 1 l.y,fragment.texcoord[0].xyxx,texture[0],RECT;
TEX A 1 2.x,fragment.texcoord[0].xyxx,texture[0],RECT;

TEX Eesuit.color.xyzw,fragment.texcoord[O].xyxx,texture[O],RECT;

RSQ A1 1l.x, A1l 1l.y;
RCP A1 1l.y, A1l 1.x;
RCP A1 1.x, A1l1l.y;

MUL A1 l.y, A1l 2.x, A1l l.x;
MOV result.color.z, A 1 1l.y;
END

A closer look at the generated code reveals that the two RCP instructions (marked red) are re-
dundant. Thus, the pattern matcher contains the additional rule binary div_sqrt to prevent the
pattern matcher from generating inefficient code. So, the pattern matcher creates the following
shader program:

! 1ARBfpl.0

TEMP A 11, A1 2;

TEX A 1 l.y,fragment.texcoord[0].xyxx,texture[0],RECT;

TEX A 1 2.x,fragment.texcoord[0].xyxx,texture[0],RECT;

TEX result.color.xyzw,fragment.texcoord[0].xyxx,texture[0],RECT;

RSQ A1 1.x, A1l l.y;

MUL A1l1l.y, A1l2.x, A1l 1l.x;
MOV result.color.z, A 1 l.y;

END

The remaining rules of the NV30 profile are strictly oriented at the code generation function of
the abstract representation classes. As the A300 architecture does not differ from the NV30 with
respect to the supported instructions, the A300 profile is simply an alias for the NV30 profile.
However, because the NV40 architecture differs from the NV30 architecture, the corresponding
NV40 profile overrides the NV30 pofile, as the following example shows.

Example 2.1.2

On the one hand, the NV40 profile has to cope with instances of the branch and loop classes
(see above), because the NV40 architecture supports both branches and loops. On the other

-92-

2. Modifications to the CGiS Compiler

hand, the NV40 architecture provides a division operation (DIV), which makes it possible to di-
vide two operands through each other with a single instruction. Thus, the NV40 profile inherits
the rules of the NV30 profile and omits the rule binary div. Additionally, the profile contains its

own binary_div rule that extends the NV30 binary div rule. So, the NV40 profile looks like fol-
lowing:

profile NV40 : extends NV30

{
omit NV30::binary div;
rule binary div : extends NV30::binary div
{
cost: { return 1; }
replace: [CirGPUBinOp (OP_GPU DIV,
$1->target (),
$1->first operand(), $l->second operand())]
}
}

Let the function divide be defined as follows:

function divide (in float a, in float b, out float c)
{

c = a/b;
}

When generating code for the NV30 architecture, the pattern matcher generates the following
shader code:

! !{ARBfpl.0

TEMP A 11, A1 2;

TEX A 1 l.y,fragment.texcoord[0].xyxx,texture[0],RECT;

TEX A 1 2.x,fragment.texcoord[0].xyxx,texture[0],RECT;

TEX result.color.xyzw, fragment.texcoord[0].xyxx,texture[0],RECT;
RCP A 11.x, A 11.y;

MUL A11l.y, A1l2.x, A1l1l.x;

MOV result.color.z, A 1 1l.y;

END

Making use of the NV40 profile, the pattern matcher replaces the red marked instructions with
a single DIV operation and generates the folbwing code:

! !ARBfpl.0

OPTION NV _fragment program2;

TEMP A 1 1, A 1 2;

TEX A 1 l.y,fragment.texcoord[0].xyxx,texture[0],RECT;

TEX A 1 2.x,fragment.texcoord[0].xyxx,texture[0],RECT;

TEX result.color[0].xyzw,fragment.texcoord[0].xyxx,texture[0],RECT;
DIV A 1l1l.y, A12.x, A1ll.y;

MOV result.color[0].z, _ﬁ; ;I.y;
END

-93-

Chapter V - Compiler Integration

2.2. Code Optimisation

The code optimisation pattern matcher combines several optimisations to optimise a basic block
that contains instances of the class cirGPUOperation. Currently, the pattern matcher does not
make use of a program analysis, because the integration of PAG generated analyses is not yet
finished. So, the code optimisation pattern matcher is currently not as effective as it could be,
because the pattern matcher cannot verify whether a register is still live*. However, using the
following optimisations, the pattern matcher is still able to produce reasonable results:

Nop Detection

During the code generation, the compiler might generate instructions that assign the
contents of a register to themselves. Because these instruction effectively do nothing,
the pattern matcher may safely remove them. The following table demonstrates which
instructions the optimisation pattern matcher may remove.

Input Instruction Sequence Output Instruction Sequence
MOV A.x, A.X; &
MOV A.xy, A.XYyXX; &
MOV A.x, A.XYXX; &

The pattern matcher may remove this in-
struction, because the y-component of the
register A is unused.

MOV A.xy, A.XZXX; MOV A.xy, A.XzXX;

The instruction is not a nop, because the z-
component is assigned to the y-component.

Dead Code Elimination

Whenever the pattern matcher detects two adjacent instructions, where the second in-
struction overrides the first — i.e., if the second one overwrites the result of the first one
— and the second one does not make use of the results of the first one, the pattern
matcher may safely remove the first instruction.

Input Instruction Sequence Output Instruction Sequence
ADD A.xXy, A.yxXxXxX, B.yxxx; MOV A.xy, B.xyxx;
MOV A.xy, B.xyxx;
ADD A.xy, A.yxxXX, B.yxxX; ADD A.xy, A.yxXxX, B.yxxx;
MOV A.xy, A.yXXX; MOV A.xy, A.yXXX;

The result of the second instruction depends
on the result of the first instruction, so the
pattern matcher must not remove the first

instruction.
ADD A.xy, A.yxxXx, B.yxxx; ADD A.xXy, A.yxXxXX, B.yxxx;
MOV A.x, B.x; MOV A.x, B.x;

The first instruction may not be removed,
as the second instruction does not override
the first instruction.

36 That is because the pattern matcher processes the program representation on a basic block level and
does not know about the control flow graph.

-94 -

Copy Elimination

2. Modifications to the CGiS Compiler

To reduce the number of instructions the pattern matcher tries to remove unnecessary
copy operations. If the pattern matcher detects three adjacent instructions, where the
second instruction copies the result of the first instruction and the third instruction over-
rides the first instruction without using the target of the first instruction, the pattern
matcher may both remove the second instruction and replace the target of the first in-
struction with the target of the second instruction.

Input Instruction Sequence

MUL A.x, A.y, A.z;
MOV B.x, A.X;

ADD A.x, B.z, B.x;
MUL A.x, A.y, A.z;
MOV B.x, A.X;

ADD A.x, A.X, B.y;
Copy Propagation

Output Instruction Sequence
MUL B.x, A.y, A.z;
ADD A.x, B.z, B.Xx;

MUL A.x, A.y, A.zZ;
MOV B.x, A.X;
ADD A.x, A.X, B.y;

Because the ADD instruction depends on the
result of the MUL instruction, the target of
the MUL instruction must not be replaced.

To further increase the speed of the generated code, the pattern matcher detects all
those operands that are actually copies of another register. Thus, the pattern matcher
propagates copies as far as possible to the bottom of the basic block.

MOV
ADD

MOV
MUL

MOV
SUB

MOV
SUB

A
A

XY,
XY,

XY,
-XY,

XY,
XY,

Input Instruction Sequence
XY,
XY,

B.Xyxx;
A.yxXxXxX, B.yxxx;

w

. YXXX;

(@]

<YXXX, B.YyXXX;

A.YXXX;
C.yxxXx, B.yxxx;

A.yx;
C.yz, B.yx;

-95 -

Output Instruction Sequence
MOV A.xy, B.xyxx;
ADD A.xXy, B.yxxx, B.yxxx;

The pattern matcher replaces the first oper-
and with the actual content of the accessed
register. Note that the first instruction is ac-
tually dead and can be removed in the next
step (dead code elimination).

MUL A.Xy, B.xXyxx, B.yxxx;

MOV C.xy, B.yxxXx;

After replacing C.yxooc with B.xyxx, the pat-
tern matcher pushes the MOV instruction
downwards.

MOV C.xy, A.yXXX;

SUB A.Xy, A.XyxXX, B.yxXxx;

Because the second instruction modifies
both the x- and y-component of A, the MOV
instruction must not be pushed downwards.
MOV C.xy, A.yX;

SUB A.xy, C.yz, B.yXx;

Similar to the previous example, the pat-
tern matcher cannot propagate the contents
of C, because the value of C.z is unknown.

Chapter V - Compiler Integration

+ Constant Propagation

Being a special case of the copy propagation, this optimisation tries to propagate con-
stants throughout the basic block.

Input Instruction Sequence Output Instruction Sequence
MOV B.x, {2}.x; MUL B.y, {3}.x, {2}.x%;
MUL B.y, {3}.x, B.x; MOV B.x, {2}.x;

After inserting the value of B.x, the pattern
matcher pushes the MOV instruction down-
wards to further propagate the constant.
MOV B.xy, {2, 3}.XyxX; MOV B.xy, {2, 3}.xyxx;
MUL B.y, A.Xx, B.x; MUL B.y, A.x, {2}.x;

The pattern matcher inserts the constant,
but cannot push it downwards, because the
MUL instruction partially overwrites the
result of the MOV instruction.

« Constant Vectorisation

Whenever the pattern matcher detects two MOV instructions that assign a constant to
the same register, the pattern matcher combines them to a single MOV instruction.

Input Instruction Sequence Output Instruction Sequence
MOV B.x, {2}.x; MOV B.xw, {2, 3}.xxxXy;
MOV B.w, {3}.Xx;
MOV B.xy, {2, 3}.xXyxX; MOV B.xyz, {2, 4, 5}.xyzx;

MOV B.yz, {4, 5}.xxyX;

+ Constant Folding

The optimisation pattern matcher folds each operation whose operands are constant.

Input Instruction Sequence Output Instruction Sequence
MUL B.y, {3}.x, {2}.%; MOV B.y, {6}.X%;
SLT B.x, {2}.%x, {1l}.x; MOV B.x, {0}.x;

+ MAD Combination

According to the rule mad of Example .6 in Chapter IV, the pattern matcher combines
an ADD and a MUL instruction to an MAD instruction.

Input Instruction Sequence Output Instruction Sequence
MUL A.x, B.x, {2}.x%; MAD A.x, B.x, {2}.x, {3}.x;
ADD A.x, {3}.%x, A.X;
MUL A.x, B.x, {2}.x; MUL A.x, B.x, {2}.x;
SUB B.x, A.x, {2}.x; SUB B.x, A.x, {2}.x;
ADD A.x, {3}.x, A.x; ADD A.x, {3}.x, A.x;

The pattern matcher must not combine the
two instructions, as the SUB instruction de-
pends on the result of the MUL instruction.

- 96 -

2. Modifications to the CGiS Compiler

+ Condition Optimisation

This optimisation only applies to the NV40 architecture. It reduces the required number
of instructions that are related to a branch test. In contrast to other architectures, the
GPU performs the branch test on a special condition register, whose contents must be
determined beforehand - to do that, the character ¢ must be added to the name of the
corresponding instruction — as the following example shows:
SGT A.x, A.x, {2}.x;
MOVC A.x, A.Xx;
IF GT.x;
MOV A.x, {0};
ELSE;
MOV A.x, {1};
ENDIF;

After executing the above code, the value of the x-component of the register A is 0, if
the value of that component was greater than 2, and is 1 otherwise. However, as each
instruction is able to modify the condition register, the above code is slightly inefficient.
Pushing the modification of the condition register as far as possible to the top, the con-
dition optimisation tries to remove unnecessary MOVC instructions.

Input Instruction Sequence Output Instruction Sequence
SGT A.x, A.x, {2}.x; SGTC A.x, A.x, {2}.x;
MOVC A.x, A.X;
SLT A.x, B.x, {2}.X%; SLT A.x, B.x, {2}.x;
MOVC B.x, B.x; MOVC B.x, B.x;
MOVC A.x, A.Xx; MOVC A.x, A.X;

In this case, the pattern matcher must not
perform the previous optimisation, because
the condition register would then be B and
not A. However, the first MOVC instruction
is obsolete and could be removed by another
optimisation.

Apart from the copy and constant propagation, the discussed optimisations can be easily real-
ised. The following tpmg code sequence displays an excerpt of the NV30 optimisation profile.
The rule dead code demonstrates how simple the implementation of the dead code elimination
optimisation actually is, whereas the functions overrides and uses_target verify whether the first
matched instruction may be removed.

profile NV30

{
rule dead_code
{
search: [CirGPUOperation ($$->target() != NULL),
CirGPUOperation ($$->target() != NULL)]
condition: { return overrides($2, $1) && !uses_target($2, $1); }
cost: { return -1; }
replace: [$2]
}
}

-97.-

Chapter V - Compiler Integration

Unfortunately, the tpmg implementation of both the copy and constant propagation optimisa-
tion is not that straightforward. The main problem is to prevent the pattern matcher from re-
verting a step of the optimisation right after that step has been performed, which finally causes
the pattern matcher to loop endlessly. This problem only occurs, if the pattern matcher detects
two adjacent unary instructions that do not interfere with each other. Table V.1 shows an ex-
ample input basic block that would cause the pattern matcher to loop forever.

Basic Block Basic Block Basic Block
(initial) (after first step) (after second step)

MOV A.x, {2}.x; MOV B.x, {3}.X; MOV A.x, {2}.Xx;
MOV B.x, {3}.x; | MOV A.x, {2}.x; MOV B.x, {3}.x;

Table V.1: Endless loop during the constant propagation optimisation.

When the pattern matcher starts to optimise the initial version of the basic block, the pattern
matcher will apply the constant propagation rule at first. Because there is no value analysis
available at the time of writing, this rule tries to push constants as far as possible to the bottom
of the basic block. So, the constant propagation optimisation pushes the first MOV instruction
after the second one and leaves the residue of the basic block to the other optimisation rules.
However, after the pattern matcher has finished the first optimisation pass, the constant
propagation rule can be applied again. So, the pattern matcher automatically reverts the effect
of the first iteration. To prevent these endless loops, every unary operation has to remember the
last obstacle the operation has hit, so that the pattern matcher is able to detect whether a rule is
going to revert the effect of a previous optimisation step.

Altogether, the advantages (high level of abstraction, higher maintainability), which the tpmg
implementation of the above optimisations offers, certainly outweigh the small organisational
effort that is necessary to prevent the pattern matcher from looping endlessly. Note that this be-
haviour of the generated pattern matcher arises from its design and is thus not a bug. With a
working value analysis, the constant propagation rule could be refined such that it is not re-
quired to push constants downwards in the basic block.

- 98-

2. Modifications to the CGiS Compiler

2.3. Competitive Comparison

By means of 20 test cases, the following three sections compare the original code generation
and code optimisation method of the CGiS compiler with the code generation and code optim-
isation pattern matcher with respect to their runtime and the efficiency of the generated code.
All but two of the test cases originate from examples and regression tests of the CGiS compiler
CVS repository. The following two test series — one for the NV30 and the other for the NV40
profile — have been executed on an AMD Athlon 64 3700+ and a NVIDIA GeForce 6800 Ultra.
The A300 profile has been excluded, because it resembles the NV30 profile.

2.3.1. Code Generation

As hinted in Section 2.1, the code generation pattern matcher implements the original code
generation method, apart from a minor exception. So, it is expected that the pattern matcher
creates the same code most of the time, whereas the pattern matcher has been designed such
that it works best when determining the local cost minimum and using the first-match policy.
The following two tables show how much time the original code generation method and the
pattern matcher take to compile abstract instructions into GPU instructions.

Code Generation (original) Code Generation (tpmg)
Test Abstract Instr.
GPU Instr. Time (us) GPU Instr. Time (us) Factor
1 11 8 37 8 181 4.9
2 12 18 86 18 160 2.1
3 12 10 79 10 173 2.2
4 12 9 47 9 174 3.7
5 12 23 44 23 203 4.6
6 13 15 74 15 177 2.4
7 14 10 46 10 228 5.0
8 16 13 78 13 260 3.3
9 19 11 57 11 340 6.0
10 20 16 76 16 280 3.7
11 25 20 82 20 382 4.7
12 26 18 73 18 329 4.5
13 28 18 69 16 497 7.2
14 32 24 237 24 1279 5.4
15 36 32 131 32 558 4.3
16 52 40 154 40 727 4.7
17 59 39 137 35 911 6.7
18 73 44 158 44 1885 11.9
19 85 75 242 75 1163 4.8
20 105 99 321 99 1338 4.2
Average 33.1 27.1 111 26.8 563 5.1

Table V.2: Comparison of the original and the tpmg NV30 code generation.

- 99 -

Chapter V - Compiler Integration

2000

1800

1600 f—

1400

1200 A v

1000 f \

AN original
tpmg

Time (us)

600 Vv

400

-

2007 T ~——

0 I I I I I I I I I I I I I I I I I I !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Case

Figure V.1: Original and tpmg NV30 code generation time.

Table V.2 shows how the original code generation method compares to the pattern matcher
when generating code for the NV30 hardware architecture. Apart from the test cases 13 and 17,
the code generation pattern matcher has produced the same number of instructions. This differ-
ence arises from the pattern matcher's ability to create more optimal NV30 code when it comes
to divisions of square roots (see Example .1). According to Figure V.1, which visualises the
compile time of each test case, the execution time of the code generation pattern matcher scales
linearly with the number of abstract instructions to compile. This corresponds to the runtime
analysis (see Section 3.4 of Chapter III). Test case 18 represents the only exception of this ob-
servation, whereas the reason for the divergenceis unclear”.

Taking 17us to compile an instruction on average, the code generation pattern matcher is about
five times slower than the original code generator However, because the runtime of the pattern
matcher averages only 1.59% of the total processing time, this increase in runtime does not
have a great impact on the overall runtime of the CGiS compiler.

1800

1600 F—

1400 | \ /

1200

~

3 1000 —

)

-E 800 \original
600 o pmg
400 -
200 = ~—_———

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Test Case

Figure V.2: Time to generate NV40 code (original and tpmg code generator).

Because the NV40 profile of the code generation pattern matcher comprises more rules, as the
pattern matcher additionally has to cope with branches and loops, the pattern matcher needs

37 While compiling test case 18, the pattern matcher neither needs to backtrack nor makes use of rules
whose search pattern contains a wildcard pattern.

- 100 -

2. Modifications to the CGiS Compiler

more time to generate code for the NV40 architecture, as Table V.3 shows. As expected, the pat-
tern matcher produces the same instruction for each test case, except for the test cases 13 and
17 for the same reason as above. A comparison of the results shown in Table V.2 and Table V.3
reveals that the CGiS compiler generates less instructions when compiling a program for the
NV40 architecture (see test cases 11 to 14, 16, 17, 19 and 20). The main reason for this differ-
ence is that cgisc does not need to perform the if-conversion (as Figure I1I.17 in Chapter II
demonstrates), because the NV40 architecture supports branches. When compiling test case 19,
the compiler thus creates 75 NV30 instructias, but only 58 NV40 instructions.

According to Figure V.2, the execution time of the code pattern matcher scales linearly with the
number of instructions to compile, whereas test case 18 diverges as above. As Table V.3 shows,
the pattern matcher is about six times slower than the original code generator when generating
NV40 code. On average, the code generation pattern matcher compiles an abstract instruction
into an NV40 instruction in 18us. However, taking less than 2% of the total processing time to
compile the abstract representation, the pattern matcher virtually does not slow down the CGiS
compiler at all.

Tost Abstract Instr. Code Generation (original) Code Generation (tpmg)
GPU Instr. Time (us) GPU Instr. Time (us) Factor
1 11 8 45 8 152 3.4
2 12 18 74 18 182 2.6
3 12 10 57 10 177 31
4 12 9 46 9 148 3.2
5 12 23 48 23 224 4.7
6 13 15 71 15 202 2.8
7 14 10 44 10 264 6.0
8 16 13 57 13 204 3.6
9 19 11 49 11 306 6.2
10 20 16 75 16 292 3.9
11 25 18 77 18 417 5.4
12 26 17 66 17 343 5.2
13 28 17 57 16 484 8.5
14 32 22 210 22 1268 6.0
15 36 32 129 32 547 4.2
16 50 36 107 36 754 7.0
17 59 36 125 34 966 7.7
18 73 44 170 44 1777 10.5
19 81 58 129 58 1227 9.5
20 105 93 223 93 1523 6.8
Average 32.8 25.3 93 25.2 573 6.2

Table V.3: Comparison of both NV40 code generation methods.

- 101 -

Chapter V - Compiler Integration

2.3.2. Code Optimisation

Displaying the number of generated instructions and the necessary time, the following two
tables demonstrate the runtime of the code optimisation pattern matcher in comparison with
the original code optimisation method.

Note that the results presented in Table V.4 and Table V.5 strongly depend on the preceding
code generation phase. Thus, if the original code generator creates 18 instructions where the
pattern matcher generates only 16 instructions, the original code optimiser has to optimise 18
instructions, whereas the code optimisation pattern matcher must only process 16 instructions.
So, the effectiveness of the code optimisers depend on the outcome of the corresponding code
generators.

In contrast to the code generation pattern matcher, the code optimisation pattern matcher is de-
signed to determine either the local or the global cost minimum. However, it turns out that the
pattern matcher works too inefficient when optimising a basic block with respect to the global
cost minimum.

Code optimisation Code Optimisation Code Optimisation
Test (original) (local cost minimum) (global cost minimum)
Instr. Time (us) Instr. = Time (us) Factor |Instr. Time (us) Factor
1 6 52 7 178 3.4 7 241 4.6
2 16 98 18 328 3.3 18 302 31
3 8 93 10 107 1.2 10 99 1.1
4 5 59 9 138 2.3 9 161 2.7
5 21 91 22 1149 12.6 22 1188 13.1
6 13 93 15 282 3.0 15 290 31
7 7 61 8 224 3.7 8 826 13.5
8 11 111 13 432 3.8 13 509 4.6
9 10 55 4 2087 37.9 4 1233 22.4
10 13 106 13 457 4.3 13 994 9.4
11 17 105 14 2364 22.5 14 18007 171.5
12 14 74 18 250 3.4 18 276 3.7
13 16 67 7 2783 41.5 7 5708 85.2
14 19 191 19 8220 43.0 19 729044 3817.0
15 31 89 32 8157 91.7 32 7933 89.1
16 34 164 35 2116 12.9 35 2765 16.9
17 36 118 24 5085 43.1 24 47989 406.7
18 42 106 28 8862 83.6 28 9863 93.0
19 65 607 72 3579 5.9 72 1294389 2132.4
20 90 499 90 1988 4.0 90 2577 5.2
Average 23.7 142 23.0 2439 17.2 23.0 106219 748.0

Table V.4: Comparison of the original and the tpmg NV30 code optimisation.

-102 -

2. Modifications to the CGiS Compiler

Table V.4 shows how fast and how strong the original code optimiser and the pattern matcher
optimise the previously generated NV30 code. A closer look at the results reveals that the code
optimisation pattern matcher only optimises about half of the test cases (9 to 11, 13, 14,17, 18
and 20) as good as or better than the original code optimiser, independent from the cost minim-
um. The main reason is that the pattern matcher processes the code on a basic block level and
does not make use of a program analysis. So, the pattern matcher is currently not able to per-
form certain optimisations. However, reducing the code by about 14.2%, the code optimisation
pattern matcher is still slightly more effective than the original code optimiser, which reduces
the program code by about 12.5%.

Additionally, Table V.4 shows that, independent from the target minimum, the pattern matcher
generates the same number of instructions. Because the pattern matcher generally takes too
long to determine the global cost minimum (on average about 748 times longer than the origin-
al code optimiser), the local cost minimum processing method is the processing method of
choice. So, I will only refer to the local cost minimum processing method in the following.

As Figure V.3 depicts, there is no linear correlation between the runtime of the code optimisa-
tion pattern matcher and the number of instructions to optimise. Although test case 16 com-
prises more instructions than test case 17 (see Table V.2), the pattern matcher takes longer to
optimise test case 17. This observation correlates to the runtime analysis, which predicts that
the runtime of the local cost minimum processing method depends on the processing passes,
which cannot be easily determined beforehand (see Section 3.4 of Chapter III).

Being on average about 17 times slower than the original code optimiser, the code optimisation
pattern matcher optimises a NV30 instruction in 91us while determining the local cost minim-
um. Although this appears to be pretty slow, the runtime of the pattern matcher only accounts
for 4.9% of the total processing time of the CGiS compiler.

9000

8000 — f \

7000 —

6000 —

5000 ——

Time (us)

4000 \ / — I\ original
tpmg (local)

3000 W N

2000 a

1000 s _—

0 I I I I] I I I I I I ! I I I I I I !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Case

Figure V.3: Original and tpmg NV30 code optimisation time.

Table V.5 shows that the code optimisation pattern matcher generally optimises NV40 code
slower but more effective than NV30 code. However, the pattern matcher is only able to optimi-
se about half of the test cases as good as or better than the original code optimiser for the same
reasons as above. However, determining the local cost minimum, the pattern matcher is able to
reduce the program code by about 15.9% and is thus more effective than the original code op-
timiser, which reduces the code by about 13.0%.

A closer look at the test cases 14, 16 and 18 reveals that the pattern matcher produces more op-
timal results when determining the global cost minimum. However, because the effect is quite

- 103 -

Chapter V - Compiler Integration

minimal, and the pattern matcher takes too long to optimise the program code with respect to
the global cost minimum (on average 596 times longer than the original code optimiser), the
local cost minimum processing method is again the processing method of choice. So, I will only
refer to the local cost minimum processing method in the following.

Code optimisation Code Optimisation Code Optimisation
Test (original) (local cost minimum) (global cost minimum)
Instr. Time (us) Instr. = Time (us) @ Factor |Instr. Time (us) Factor
1 6 53 7 177 3.3 7 258 4.9
2 16 98 18 335 3.4 18 314 3.2
3 8 94 10 122 1.3 10 122 1.3
4 5 61 9 173 2.8 9 187 3.1
5 21 85 22 1335 15.7 22 2238 26.3
6 13 92 15 352 3.5 15 319 3.5
7 7 63 8 227 3.6 8 973 15.4
8 11 92 13 510 5.5 13 576 6.3
9 10 52 4 1159 22.3 4 2537 48.8
10 13 104 13 477 4.6 13 1069 10.3
11 15 101 13 1830 18.1 13 11965 118.5
12 13 73 17 243 3.3 17 218 3.0
13 15 66 7 3436 52.1 7 6779 102.7
14 17 207 18 7694 37.2 17 863443 4171.2
15 31 86 32 9525 110.8 32 10026 116.6
16 30 133 32 2510 18.9 31 3519 26.5
17 33 113 21 5046 44.7 21 47658 421.8
18 42 104 31 8666 83.3 28 12298 118.3
19 48 337 49 3469 10.3 49 534982 | 1587.5
20 85 499 84 2528 5.1 84 2993 6.0
Average 22 126 21.2 2489 19.8 20.9 75124 596.2

Table V.5: Comparison of the NV40 code optimisers.

Figure V.4 depicts that the runtime of the code optimisation pattern matcher optimising NV40
code behaves similar to the pattern matcher's runtime when processing NV30 code. Although
the preceding code generation phase produces less NV40 than NV30 instructions, the pattern
matcher takes longer to optimise NV40 code, because the pattern matcher additionally checks
whether the condition optimisation can be applied (see Section 2.2).

Independent from the architecture, the pattern matcher is most of the time able to apply the
constant and copy propagation to optimise a basic block. Occasionally, the code optimisation
pattern matcher makes use of the copy and dead code elimination and rarely applies constant
folding and constant vectorisation. When optimising NV40 code, the pattern matcher is often
able to make use of the condition optimisation, if the code contains branches.

- 104 -

2. Modifications to the CGiS Compiler

10000

9000 A

8000 — A

7000 —

6000 —

5000 — —

Time (us)

\ original

000 — ——
4 tpmg (local)

3000 L/ N

2000

1000 A 7\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Test Case

Figure V/4: Time to optimise NV40 code (original and tpmg optimiser).

On average, the pattern matcher optimises an NV40 instruction in 99us and is about 19 times
slower than the original code optimiser. However, as the optimisation only accounts for 5.0% of
the total processing time of the CGiS compiler, this runtime increase is ptally acceptable.

Although the code optimisation pattern matcher is on average slightly more effective than the
original code optimiser, the pattern matcher is not as effective as it could be. The main reason is
that the pattern matcher processes the basic blocks separately not knowing about their inter-
connections. So, the pattern matcher is not able to perform certain optimisations as the pattern
matcher lacks the necessary information that a liveness or value analysis would provide. If the
pattern matcher would possess the required data, its effectiveness could be raised to about 20%
for NV30 code and about 25% for NV40 code.

As the following section demonstrates, the pattern-matcher generated and optimised code is
nevertheless on average faster than the code, which the original code generation and optimisa-
tion procedure of the CGiS compiler produces.

- 105 -

Chapter V - Compiler Integration

2.3.3. Runtime

This section investigates the runtime of each test case to determine how efficient the generated
code actually is. Because the original code optimiser and the code optimisation pattern matcher
produce different results, there should be a measurable difference in their runtime.

Table V.6 displays how the execution times of the 20 test cases compare to each other with re-
spect to the used optimiser and target architecture. All test cases have been compiled with gcc
3.3.6 (without any optimisation flag) and executed under Linux (Ubuntu 6.06) using the
NVIDIA graphics card driver 1.0-8756.

NV30 NV40
Test Time (orig., us) Time (tpmg, us) % Diff. Time (orig., us) Time (tpmg, us) % Diff.
1 1965 1988 101.2 1921 1936 100.8
2 31703 24993 78.8 28534 24716 86.6
3 2594 2618 100.9 2590 2603 100.5
4 1835 2018 101.0 1957 2132 108.9
5 8398 10364 123.4 8331 10507 126.1
6 3766 3797 100.8 4025 3991 99.2
7 1892 1976 104.4 1893 1985 104.9
8 2462 2507 101.8 2542 2568 101.0
9 1654 1563 94.5 1676 1550 92.5
10 2897 2863 98.8 2881 2860 99.3
11 3299 3171 96.1 3312 3205 96.8
12 2153 2238 103.9 2148 2180 101.5
13 2011 1937 96.3 2103 2050 97.5
14 3343 3408 101.9 3733 3738 100.1
15 8739 8819 100.9 15975 15904 99.6
16 4477 4495 100.4 4157 4143 99.7
17 2556 2370 92.7 3039 2652 87.3
18 11858 11701 98.7 11985 11833 98.7
19 26441 26715 101.0 11978 12462 104.0
20 37204 38947 104.7 36355 34579 95.1
Average 8062 7924 98.3 7557 7380 97.7

Table V.6: Comparison of the runtime of the optimised NV30 and NV40 code.

On average, the pattern-matcher optimised NV30 code is about 1.7% faster, whereas the pat-
tern-matcher optimised NV40 code is about 2.3% faster. The difference is clearly noticeable at
the test cases that the code optimisation pattern matcher optimises best (e.g., 9 to 11, 13, 17
and 19).

However, some of the above results are quite confusing, especially the runtime of the test cases
2 and 5. Although the original code optimiser generates only 16 instructions, where the code

- 106 -

2. Modifications to the CGiS Compiler

optimisation pattern matcher produces 18 instructions when optimising test case 2 for both the
NV30 and NV40 architecture, the pattern-matcher optimised code is faster. This effect is too
strong to be an error in measurement and must thus originate from the optimisations of the
graphics card's driver. The same applies to test case 5, where the original code optimiser pro-
duces 21 instructions and the pattern matcher produces 22 instructions. Although the difference
is only one instruction, the pattern-matcher optimised code is about 25% slower. It is very un-
likely that a single operation causes this divergence. Note that, in both cases, the optimised
code only differs in the number of MOV instructions.

Figure V.5 displays how the runtimes of the test cases compare to each other. A closer look re-
veals that the generated NV40 code of about half of the test cases is slower than the corres-
ponding NV30 code. The runtime of the NV30 and NV40 code of test case 15 shows the most
significant difference, although the code optimisers have produced the same instructions for
both NV30 and the NV40 architecture. Again, this divergence seems originate from the driver of
the graphics card (or this might even be a peculiarity of the used graphics card). In contrast to
test case 15, the generated NV40 code of test case 19 runs significantly faster than the corres-
ponding NV30 code. The reason for this difference appears to be the number of generated in-
structions (around 70 for NV30 and about 48 for NV40) and not to be a peculiarity of the
graphics card's driver

40000
37500 —
35000 =

32500 3
30000 H
27500 = L
25000 = = I
~
é 22500 G
o 20000 = [l original (NV30)
-E 17500 - —A N [tpmg (NV30)
15000] r = original (NV40)
12500 H r [tpmg (NV40)
10000 L
7500 If L
5000 3
2500 3
o I [11

T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Case

Figure V.5: Execution time of the optimised test cases.

So, although the code optimisation pattern matcher has not yet reached its full potential, the
optimisations still have a measurable effect — even if little — despite the heavy optimisations the
graphics card's driver additionally performs.

- 107 -

Chapter VI - Related Work

VI. Related Work

This chapter briefly introduces two systems that are related to the present work and discusses
the main differences between these applications and the pattern matcher generator tpmg.

1. BURG

BURG is a program that compiles a tree grammar into a BURS®® tree parser [44]. Similarly to
the pattern matcher description language, the BURG tree grammar corresponds syntactically to
the bison grammar. Comprising a header section, which configures the tree parser, and a rule
section, which contains a sequence of cost-annotated rules, the BURG grammar furthermore
bears resemblance to the tpmg grammar (see Section 2 in Chapter IV). However, at this point
the similarities between the two applications stop.

In contrast to tpmg-generated pattern matchers, tree parsers operate — as their name already
suggest — on trees. So, the application in which to embed a BURG-generated tree parser, has to
represent the data in treedike structures. To enable the tree parser to navigate within the intern-
al tree structure, the user must adlitionally specify how to access the left and rightchild of each
tree node. BURG-generated tree parsers differ furthermore from tpmg-generated pattern match-
ers, because the rules are not separated into different profiles. Instead, the user specifies a start
rule with which the tree parser begins to match an input tree. The consequence is that a BURG-
generated tree parser is dedicated to a single hardware architecture. Thus, the user has to im-
plement a new tree parser for each architecture to support, whereas the application must select
the appropriate tree parser manually. Additionally, BURG does not support wildcard patterns.
The user may only specify patterns that describe either leafs or nodes with one or two child
nodes. So, BURG tree parsers cannot skip past a specific portion of the input tree without pro-
cessing it. In contrast to tpmg-generated pattern matchers, tree parsers are not able to match in-
structions that belong to different expression trees. Thus, a tree parser might not be able to op-
timise an ADD and a MUL instruction to a MAD instruction (see Example .6 in Chapter III), if
the corresponding instructions belong to two different expression trees®.

The main field of application of BURG-generated tree parsers is the code generation. Being
designed to realise fast instruction selectors, BURG tree parsers discovers an optimal parse of an
input tree in linear time. BURG is used by the ANSI C compiler lcc [45] that generates code for
multiple target architectures, such as ALPHA, SPARC, MIPS R3000 and Intel x86.

2. Recognizer

Implementing a code optimiser is a complicated task, because it requires — amongst other things
— detailed knowledge about the target architecture. So, whenever a compiler should support a
new platform, the developer must invest a lot of time to realise good optimisations. To relieve
the developer from this burden, Jodo Dias and Norman Ramsey propose a recognizer [46],
which realises machine-independent code selection and optimisation. A recognizer is generated
automatically from a declarative machine description that clearly describes — independent from
any compiler — properties of a target platform.

The generated recognizer requires the compiler to represent intermediate code as machine-in-
dependent register-transfer lists (RTLs) [47]. An RTL is some kind of intermediate code repres-

38 BURS abbreviates Bottom-Up Rewrite System.

39 A tpmg-generated pattern matcher is not subject to this restriction, because the pattern matcher pro-
cesses basic blocks. If the two instructions reside in the same basic block, the pattern matcher is able
to optimise them.

- 108 -

2. Recognizer

entation that describes how data between the registers of an architecture is being transferred.
Many compilers, such as the GNU C compiler gcc, make use of RTLs.

By means of a declarative machine description, the recognizer tries to generate more optimal
RTLs. The recognizer will continue until no more optimisations can be applied. The recognizer
omits a previously generated RTL, if the new RTL cannot be implemented on the target plat-
form according to the machine description.

So this approach differs greatly from tpmg-generated pattern matchers, because the user does
not have to explicitly implement the code optimiser, as the generated recognizer handles this
part. Furthermore, the user does not have to care about the peculiarities of the target platform,
because the used declarative machine description automatically covers all of them.

Dias and Ramsey have successfully generated and tested a recognizer for the x86 architecture in
the Quick C-- compiler [48]. Unfortunately, the results were modest, because the rest of the
compiler's x86 back end was still hand-written. So, to achieve better results, Dias and Ramsey
ultimately plan to generate the whole back end.

- 109 -

Chapter VII - Future Work

VII. Future Work

Chapter V demonstrates that tpmg-generated pattern matchers can be used to replace a vital
part of a compiler's back end. Although being able to improve the code generation and code
optimisation, tpmg-generated pattern matchers can still be advanced to produce even better

results.

In the future, I phn to implement the following features:

Java back end

A Java back end would definitely improve the versatility of tpmg. Apart from minor
adjustments, the current C"* implementation could be easily ported to Java, because the
current Java version supports both exceptions and — more important — templates.

Data structure interface

A data structure interface that enables the user to use custom data types with tpmg-gen-
erated pattern matchers would furthermore improve the versatility of tpmg. The main
advantages of this improvement are that, on the one hand, the user is no longer forced
to use the STL, and on the other hand, the user is able to specify which data structure to
use, so that the runtime of a generated pattern matcher is not bound to implementation
of the STL.

Keep matched items

The current implementation removes every object instance that has been matched by an
item pattern. However, under certain circumstances, the user might want to keep a
matched object instance. This feature would enable a rule to peek downwards in the
basic block. A more sophisticated dead code elimination rule could then be specified as
follows:

rule dead code elimination

{
search: [Operation,
*,
keep: Operation ($$->target() == $1l->target())]
cost: { return 1; }
replace: []
}

This rule detects two, not necessarily adjacent operations, where the second operation
overrides the result of the first operation. If the rule matches, only the first operation
may be removed from the basic block, because the second item pattern is marked spe-
cially (keep flag).

If an object instance matched by an item pattern should be kept in the basic block, the
implicit assumption that all object instances are pushed upwards past every wildcard
pattern obviously no longer holds. Thus, the user must additionally be able to specify
rule-specific implicit conditions (see below).

-110 -

VII. Future Work

Specify an alternative insertion point

When optimising a basic block, every rule inserts the replace pattern before the first
matched object instance. This behaviour results from the implicit assumption that all ob-
ject instances are to be pushed upwards past every wildcard pattern in the basic block.
However, to enable a rule to push object instances downwards, the user should be able
to specify an alternative insertion point. So, a rule that pushes an instruction down-
wards past a wildcard pattern could be specified as follows:

rule push _downwards

{
search: [Operation,
*,
after: Operation]
cost: { return 1; }
replace: [§1,
$2]
}

If the rule matches, it will virtually push the first matched operation past the wildcard
pattern in front of the second operation. So, the implicit condition must consider that
the rule pushes the matched instruction downwards and not upwards. Thus, the user
must be able to specify a rule-specific implicit condition (see next point).

Rule-specific implicit conditions

If the user wants certain rules to behave differently than others e.g., by specifying an al-
ternative insertion point, a single global implicit condition function does not satisfy.
Thus, the user must be able to override the global implicit condition function for these
rules to ensure the correct behaviour of the pattern matcher

Matching control-flow graphs

The ultimate goal is to generate pattern matchers that are able to process the whole
control-flow graph instead just a single basic block. Coping with branches and loops
automatically, a control-flow graph pattern matcher would then be able to achieve far
better results thanthe current tpmg-generated pattern matchers.

To keep the rule specifications as simple as possible, it appears to be feasible to hide the
control-graph structure completely, so that the user does not have to cope with
branches or loops within rules. Merely the implicit conditions would increase in com-

plexity.

-111 -

Chapter VIII - Conclusion

VIII. Conclusion

The present work discusses theoretical and practical aspects of the pattern matcher generator
tpmg and demonstrates, by means of the CGiS compiler cgisc, the usefulness of the generated
pattern matchers that can be used to realise retargetable code generators and optimisers. The
following achievements have been accomplished:

Retargetability

Most important of all accomplishments, the profile and rule inheritance system, which
corresponds to the class inheritance mechanism of object-oriented programming lan-
guages, enables a developer to quickly adjust a pattern matcher to a new target archi-
tecture. Besides specifying which profile to use, no more manual interaction with the
generated pattern matcher is required.

Versatility

The integration of tpmg-generated pattern matchers into a compiler does not pose a
problem at all, because the pattern matchers make few demands to the implementation
of the compiler. Note that the field of application is not restricted to compilers, because
tpmg-generated pattern matchers do not make any assumptions about the objects to
process. So, the pattern matchers can by employed in any application that operates on
lists of objects.

Extensibility

The tpmg template library has been designed such that it can be easily extended. So,
most of the planned improvements presented in Chapter VII are easy to add. In fact, I
have already implemented the keep flag that allows the developer to specify whether the
matched object of an item pattern should not be removed from the basic block.

Cooperation with program analyses

To further pitch the tpmg-generated pattern matchers to a developer and ease the integ-
ration into a compiler, the pattern matchers are designed to work hand in hand with
program analyses. Making use of implicit functions (condition and postpass), the de-
veloper can easily interact with any program analysis to influence the behaviour of a
pattern matchet

Increased productivity

Because the generated pattern matchers identify and replace instruction patterns auto-
matically, the developer no longer has to cope with low-level algorithms. Thus, I expect
that the developer is able to concentrate earlier on more important aspects of the com-
piler, which finally increases the developer's overall productivity.

Ease of use

Adopting language features of the bison, C** and Java grammar, the pattern matcher
description language provides a familiar development environment, in which the de-
veloper can start implementing the desired pattern matchers right away. Because both
syntax and semantics are more or less selfexplanatory, the developer will accustom with
that new language in no time.

Nicolas Fritz successfully made use of the pattern matcher description language to im-
plement the SSE profile that handles the SSE code generation of the CGiS compiler.

-112-

VIII. Conclusion

Integration into an existing compiler

To confirm the usefulness of tpmg-generated pattern matchers, a code generation and a
code optimisation pattern matcher have been introduced in the CGiS compiler cgisc.
The test results show that, accompanied by an acceptable increase in runtime, the pat-
tern matchers are able to produce better code than the original code generation and
code optimisation procedure.

-113 -

Appendix

A. Pattern Matcher Description Language Grammar

Using an extended Backus-Naur form (see Section 2 of Chapter IV), this appendix chapter gives
an overview of the grammar of the pattern matcher description language. Please note that the
grammar does not include the preprocessor statements, because they are not visible to the pars-
er.

RULEFILE ::= ([HEADER] RULESET)"

HEADER t:= '${' ASCII* '%}'

RULESET ::= RULESET HEADER RULESET BODY

RULESET HEADER ::= ruleset '<' CLASSNAME ',' CLASSNAME '>'
RULESET BODY ::= '{' [IMPLICIT] (RULE | PROFILE)* '}’
PROFILE ::= PROFILE HEADER PROFILE BODY

PROFILE HEADER ::= profile PROFILENAME [PROFILE EXTEND]
PROFILE EXTEND ::= ':' extends PROFILENAME [',' PROFILENAME]*
PROFILE BODY ::= ';' | '{' (RULE | RULE OMIT)" '}'
RULE_OMIT ::= omit RULE ID [',' RULE ID]* ';'

RULE_ID ::= [[PROFILENAME] '::'] RULENAME

RULE ::= RULE_HEADER RULE_BODY

RULE_HEADER rule RULENAME [RULE EXTEND] [RULE MASK]

RULE_EXTEND ::= ':' RULE ID
RULE_MASK ::2= ':' '(' INTEGER ')’

RULE_BODY ::= '{' [SEARCH] [CONDITION] [COST] [REPLACE] '}’
SEARCH ::= SEQUENCE

SEQUENCE ::= '[' SPATTERNS ']' | '{' SPATTERNS '}

SPATTERNS ::= [SPATTERN [',' SPATTERN]*]

SPATTERN ::= SEQUENCE | ITEM | WILDCARD

ITEM ::= ('.' | CLASSNAME) ['(' EXPRESSION ')']

EXPRESSION ::= ASCII*

WILDCARD ti= k!

CONDITION ::= '{' ASCII* '}’

COST ::= '{' ASCII* '}'

REPLACE ::= '[' [RPATTERNS] ']’

RPATTENRS ::= RPATTERN [',' RPATTERN]*

RPATTERN ::= RGUARD | RITEM

RGUARD ::= if '(' EXPRESSION ')' REPS [else (RGUARD | REPS)]
RITEM ::= '$' INTEGER [INITIALISERS] | ITEM [INITIALISERS]
INITIALISERS ::= (':' INITIALISER)'

INITIALISER ::= IDENTIFIER '(' EXPRESSION ')'

114 -

Appendix

B. Pattern Matcher Examples

In the first section, this appendix chapter demonstrates how to invoke tpmg. In the remaining
sections, this chapter present some other applications tpmg-generated pattern matchers can be
used for.

1. Invoking tpmg

The following command invokes tpmg:

tpmg [parameters] file...

The user must provide at least one file, otherwise the program stops immediately. Processing
each specified file separately, tpmg creates a C** header and code file depending on the input
file's base name. If e.g., the name of an input file is test.tpmg, tpmg will create test.h and
test.cpp — provided that the input file is valid.

The following command line parameters influence the béhaviour of tpmg:

-D VARIABLE

This parameter defines a variable just as the tpmg preprocessor statement #define. It

remains defined for each input file unless it isundefined.

-1 PATH

Adds PATH to the list of include paths. The pattern matcher generator first searches in

the specified include paths for files that are specifiedin include statementsof the form:
#include <FILE>

If the pattern matcher generator cannot find the specified file, tpmg tries to look for the

file in the current working directory.

-W

Enables the warnings, so that tpmg informs the user whenever it detects a potential

runtime error (see Example .5 in Chapter IV). By default, warnings are disabled.

-P, —--pedantic

This command parameter causes tpmg to stop processing, whenever tpmg encounters a

warning.

-V, --verbose

After tpmg has processed an input file, tpmg display some information about the gen-
erated pattern matcher.

--funsafe
When specified, tpmg does not generated code that checks whether a rule accesses an
unavailable pattern (see Example .4 in Chapter IV). This command line parameter may

only be used, if the user manually checks for unsafe accesses (unavailable item patterns
are NULL pointers).

-115-

Appendix

2. List Sorting

This example shows how to realise a very simple list sorting algorithm, also known bubble sort,
with a tpmg-generated pattern matcher The pattern matcher sorts — optimises — an arbitrary list
in either ascending or descending order with respect to the value of each item. The common
base class of the list items could be implemented as follows:

class Item

{
public:
Item (int value)
: m_value (value)
{
}
public:
inline int value (void) const { return m value; }
private:
int m value;
}i

The following pattern matcher comprises two profiles, one to sort a list in ascending order and
the other to sort a list in descending order. Both profiles contain a rule named sort that flips two
adjacent items in the list depending on their value. The rule in the profile Ascending checks if
the value of the first item is smaller than the value of the second item and flips both items to
push the cheap item to left and the expensive item to the right. Note that it is not necessary to
respecify the search pattern, the cost function or the replace pattern, if another sorting beha-
viour is desired.

ruleset<Item, Item>

{ profile Ascending
{
rule sort
{
search: [«, - 1
condition: { return $1->value() > $2->value(); }
cost: { return 1; }
replace: [$2, S$1]
}
}
profile Descending
{ rule sort : extends Ascending::sort
{ condition: { return $1->value() < $2->value(); }
}
}

Independent from the used sort profile, the pattern matcher sorts the list in the desired order
after a finite number of steps. As expected, the sorting method is quite inefficient and has a

-116 -

Appendix

worst runtime of O(n*), where n is the length of the list. Obviously, the sorting takes longest, if
the items in input list are aligned inthe opposite sorting order.

3. Calculator

This example demonstrates how to realise a Polish and Reverse Polish notation calculator with a
tpmg-generated pattern matcher. The Polish notation is a special kind of notation for logic,
arithmetic and algebra. Under the assumption that the arity of each operator is given, this nota-
tion is able to work without any kind of parenthesis. The Polish notation is also known as prefix
notation, because it places the operators in front of their arguments. In contrast to the Polish
notation, the Reverse Polish notation, also known as postfix notation, places the operators after
their arguments.

Example 3.1

Given the expression e = (2+((2%4.5)/0.5))/(3-1.5). The expressions exv and ezpy are equival-
ent expressions in Polish and Reverse Polish notation respectively:

eewn=/+2/x24505-31.5
ern =2245x05/+315-/

Due to the simple structure of Polish notation expressions, a pattern matcher that evaluates
these expressions can be easily realised. The pattern matcher “optimises” a list of instances of
the Object class, from which the classes Operator and Number derive. Each number has a
unique value that can be accessed with the value function. An operator implements the eval
function that computes the result of the operation. To simplify this example, it is assumed that
all operators are binary. So, the pattern matcher is specified as follows:

ruleset<Object, Object>

{
profile Polish
{
rule Step
{
search: [Operator,
Number,
Number]
cost: { return 1; }
replace: [Number ($1->eval($2->value(), $3->value()))]
}
}
profile ReversePolish
{
rule Step
{
search: [Number,
Number,
Operator]
cost: { return 1; }
replace: [Number ($3->eval($l->value(), $2->value()))]
}
}

-117 -

Appendix

Depending on the given profile, the generated pattern matcher evaluates the given expression
by iteratively applying the rule step as long as possible. To detect an invalid expression, the
user simply has to check whether the final expression (i.e., list of objects) only contains one in-
stance of the class Number. The number of necessary steps increases linearly with the number of
operators, so the overall runtime is O(n), where n is the number of operators.

-118 -

List of Figures

List of Figures

Figure I.1: Russian abacus showing the number 1024..........ccccceveverrerinrieneserenrereresessreseens 5
Figure II.1: Abstract view on the GPU rendering ProCess.........coeoeeeeuererrerererueserersereesseseenees 13
Figure I1.2: The GPU rendering process in more detail.........ccecevceeeerereeeencrereeeeneencncncnennn e 14
Figure I1.3: Simple GLSL pixel shader that colours the resulting pixels red..................... 16
Figure I1.4: Involved software and hardware layers when using GLSL........cccceceerueuenenee. 17
Figure I1.5: Interaction between the host application and the HLSL compiler.................. 17
Figure I1.6: Interplay between the application and the Cg runtime.cccccceeveeverueennenee. 18
Figure I1.7: Compilation and interaction of an Sh shader program...........cccecerurverveennne. 19
Figure I1.8: Sh vector addition implementation..........ccceeeeeueererrrrereenerenueenesrerenteessresneseenees 19
Figure I1.9: Brook COMPIlation PrOCESS........cccocveeeeererurueucrerereresreseeseneseeseseseeesessssssesenes seeseses 20
Figure I1.10: Vector addition in BrooK..........ccceeeivenerierenenieninenienesensesssesses sovessesssesssessesssens 21
Figure I1.11: CGiS program that adds tWO VECLOTS.....ccceevertrrererereriererenieessresreneessesseseseenees 22
Figure I1.12: Directing the CGiS COAE.....c.ccevirriverririrreenireeieneserisreessereesseessssess sessessessesseenes 22
Figure I1.13: CGiS cOMPIlatiOn PrOCESS.....cccerertruererrerererrerentereressesestesesesseseses sssessessessessesasnees 23
Figure I1.14: A very general COMPIlEr SLIUCLUTE.......ccoceurueueuemercrererereeneneeseseseeneeeeesseseeeenenees 25
Figure I1.15: Internal representation of a CGiS fuUnCHiON.......ceceuevrueererereruererererereerreseeeeennes 27
Figure I1.16: Internal structure of the CGiS compiler......ccoceeeeeeerereeenencnnnnecc e 27
Figure I1.17: Applied if-CONVETSION.cccvererrierirreenieierenteeststeestssesesseessssesssesessssesesses suasssensas 28
Figure I1.18: Generating inefficient Code.........cocvvmmrenenerininnecrencneniree et enes 29
Figure III.1: State transition diagram for the NFA of Example 2.2.5.......cccccocevireruerenneneee 34
Figure II1.2: Predicate object automaton that accepts the language {a}2*{b}......c.......... 39
Figure II1.3: Rules to generate a predicate object automaton for a pattern.........ce.ceueee... 40
Figure III.4: Predicate object automaton for [{(a, true), x}, (b, trtue)]..ccceceeeverrrerrerene. 41
Figure II1.5: Corresponding POA for {(a, true), (b, true), (C, trte) }..cceceevererererrerererresnnn 46
Figure II1.6: Code generation With TUlES........ccceuierererenreerinerenisenesreesseee esressessessessessnenees 52
Figure II1.7: Code optimisation With rules..........cccecevceeeernnencncnninnecccrrnee e 52
Figure IV.1: EXPIrESSION TTRE....ccucvuiuirrertiirientiisieretriessetesesetssesestssessestssesesens saessssssesssesssssens 70
Figure IV.2: tpmg compilation dia@ram.........c.ccceeueueueeverininirunccncnininineeesetens cteesresseseesennes 71
Figure IV.3: Typical rule file header SECHION.c.ccceeurueueereecetrreeecereeeeeeeee e 72
Figure IV4: Invalid and valid optimisation of the input basic block.........c.ccceceururuerreeruene. 84
Figure IV.5: Different valid optimisations of the input basic block.........cccccerureerercrenunnneeee 85
Figure V.1: Original and tpmg NV30 code generation time...........ccceeveruervereeseeseseresennes 100
Figure V.2: Time to generate NV40 code (original and tpmg code generator)............... 100
Figure V.3: Original and tpmg NV30 code optimisation time........c.cececeurerereererereeneerennene 103
Figure V.4: Time to optimise NV40 code (original and tpmg optimiser)........cc.cccceenenee. 105
Figure V.5: Execution time of the optimised teSt CASES........cevurrrerrrererrererrerrrereeseserenennes 107

-119 -

List of Tables

List of Tables

Table I1.1: Supported standards of most recent graphics cards.........coceevererererrrrerseesueruennes 12
Table II1.1: Example regular JanguUagES.........cocecererueererrererrerereseerenssresesssessssesesseses ssessessassesses 33
Table III.2: Transition relation of an NFA that accepts the language {ab}*{a}................. 34
Table II1.3: Final state and memory function after matching aaabbb.....................c.......... 39
Table I11.4: Memory function g after matching the word cbd........cccceueuvuevereenuerenvcnnenercnee. 47
Table II1.5: Extended memory function g' after matching a valid input word.................. 47
Table II1.6: Pattern configuration after matching babac..........ceeeeeeeeerueueeereneneenenreneesennene 49
Table II1.7: Final pattern configuration after matching abb........ccccceceeeveeerererecrcncrereneveennes 50
Table II1.8: Generated alternatives while compiling abab (local cost minimum)............. 57
Table I11.9: Generated alternatives while compiling abab (global cost minimum).......... 59
Table II1.10: Generated alternatives in the first two passes while optimising abbcc........ 61
Table V.1: Endless loop during the constant propagation optimisation........c...cceceveeruenenne 98
Table V.2: Comparison of the original and the tpmg NV30 code generation..................... 99
Table V.3: Comparison of both NV40 code generation methods.........cccceeeeveceeruencnuencnce 101
Table V.4: Comparison of the original and the tpmg NV30 code optimisation............... 102
Table V.5: Comparison of the NV40 code OPtIMISETS......cocevueueuerererererrereererenssssseneesenseenenne 104
Table V.6: Comparison of the runtime of the optimised NV30 and NV40 code.............. 106

-120 -

Bibliography

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. Fernandes, The Abacus:
http://www.ee.rverson.ca/~elf/abacus

Universitét Tiibingen, Short biography of Wilhelm Schickard (German):
http://www-ti.informatik.uni-tuebingen.de/deutsch/schickard

B. Randell, "From Analytical Engine to Electronic Digital Computer: The Contributions of
Ludgate, Torres and Bush", IEEE Annals of the History of Computing, 4(4): 327-341, October
1982.

R. Rojas, "How to make Konrad Zuse’s Z3 a universal computer”, I[EEE Annals of the History of
Computing, 20(3): 51-54, July 1998.

R. Rojas, "Konrad Zuse's legacy: The Architecture of the Z1 and Z3", IEEE Annals of the History
of Computing, 19(2): 5-16, 1997.

M. R. Williams, "A History of Computing Technology", IEEE Computer Society Press, 1997.
ISBN 0-8186-7739-2.

G. Moore, "Cramming more components onto integrated circuits", Eletronics, 38(8): 114-117,
April 1965.

Institute for New Generation Computer Technology, "Fifth Generation Computer Systems '92:
Proceedings of the International Conference on Fifth Generation Computer Systems", I0S
Press, 1992. ISBN 90-5199-099-5.

K. Zuse, "Der Plankalkiil", Gesellschaft fiir Mathematik und Datenverarbeitung, Nr. 63, BMBW -
GMD - 63, 1972.

R. W. Sebesta, "Concepts of Programming Languages, 4th edition", Addison-Wesley Longman
Publishing Co., Inc., 1998. ISBN 02-0138-596-1.

R. Rojas, C. Gotekin, G. Friedland, M. Kriiger, O. Langmack, and D. Kunif, "Plankalkiil: The
First High-Level Programming Language and its Implementation", Technical Report B-3,/2000,
Freie Universitét Berlin, Institut fiir Informatik, February 2000.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin,
"Aspect-Oriented Programming", Proceedings of the 11th European Conference on Object-
Oriented Programming (ECOOP), pages 220-242, Jyvaskyld, Finland, June 1997.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn, and T. J. Purcell, "A
Survey of General-Purpose Computation on Graphics Hardware", EUROGRAPHICS, State of
The Art Report, pages 21-51, Dublin, Ireland, 2005.

T. H. Meyer and LE. Sutherland, "On the Design of Display Processors", Communications of the
ACM, 11(6): 410-414, June 1968.

D. Ingalls, Bit BLT Inter-Office Memorandum, November 1975, Xerox PARC:
http://www.bitsavers.org/pdf/xerox/alto/BitBLT Nov1975.pdf

M. Breterniz Jr., H. Hum, and S. Kumayr, "Compilation, Architectural Support, and Evaluation
of SIMD Graphics Pipeline Programs on a General-Purpose CPU", Proceedings of the 12th
International Conference on Parallel Architectures and Compilation Techniques (PACT 2003),
pages 135-145, New Orleans, LA, USA, September 2003.

OpenGL ARB, OpenGL Extension Registry:

http://www.opengl.org/registry.

OpenGL ARB, NVIDIA register combiners OpenGL extension:
http://www.opengl.org/registry/specs/NV/register combiners.txt

M. Segal and K. Akeley, OpenGL 2.0 Specification:
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf

-121 -

Bibliography

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

General-Purpose Computation using Graphics Hardware:

http://www.gpgpu.org

J. Hoxley, An Overview of Microsoft's Direct3D 10 API:
http://www.gamedev.net/reference/programming/features/d3d10overview/page2.asp

FIPS 46-3 Data Encryptlon Standard (DES) October 1999:

K. Proudfoot W. R. Mark, S. Tzvetkov, and P Hanrahan "A real-time procedural shading
system for programmable graphics hardware", Proceedings of the 28th annual conference on
Computer graphics and interactive techniques (SIGGRAPH 2001), pages 159-170, Los Angeles,
CA, USA, August 2001.

D. Tarditi, S. Puri, and J. Oglesby, "Accelerator: simplified programming of graphics processing
units for general-purpose uses via data-parallelism", Technical Report MSR-TR-2005-184,
Microsoft Research, December 2005.

R. J. Cook, "Shade Trees", ACM SIGGRAPH Computer Graphics, 18(3): 223-231, July 1984.

H. Gouraud, "Computer Display of Curved Surfaces", IEEE Transactions on Computers, 22(6):
623-629, June 1971.

B. T. Phong, "Mllumination for Computer Generated Pictures", Communications of the ACM,
18(6): 311-317, June 1975.

Pixar, The RenderMan Interface Specification:
http://renderman.pixar.com/products/rispec/index.htm

OpenGL Architecture Review Board:

http://www.opengl.org/about/arb/

W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, "Cg: A System for Programming
Graphics Hardware in a C-like Language", ACM Transactions on Graphics (TOG), 22(3): 896-
907, July 2003.

M. D. McCool, Z. Qin, and Tiberiu S. Popa, "Shader Metaprogramming",
SIGGRAPH/EUROGRAPHICS Graphics Hardware Workshop, pages 57-68, Saarbriicken,
Germany, September 2002. Revised version.

Merrimac - Stanford Streaming Supercomputer Project:

http://merrimac.stanford.edu

I. Buck, T. Foley, D. Horn, J. Sugarman, K. Fatahalian, M. Houston, and P Hanrahan, "Brook
for GPUs: Stream Computing on Graphics Hardware", ACM Transactions on Graphics (TOG),
23(3): 777-786, August 2004.

T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P Hanrahan, "Photon Mapping on
Programmable Graphics Hardware", Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pages 41-50, San Diego, CA, USA, July 2003.

N. Fritz, P Lucas, and P Slusallek, "CGiS, a new Language for Data-Parallel GPU
Programming", Proceedings of the 9th International Workshop Vision, Modeling, and
Visualization (VMV 2004), pages 241-248, Stanford, CA, USA, 2004.

R. Wilhelm and D. Maurer, "Ubersetzerbau - Theorie, Konstruktion, Generierung", Springer-
Verlag, 1992. ISBN 3-540-55704-0 (German).

M. Alt, E Martin and R. Wilhelm, "Generating Analyzers with PAG", Technical Report A10/95,
Universitit des Saarlandes, FB 14 Informatik, 1995.

Flex, a fast lexical analyser generator:

http://www.gnu.org/software/flex/

Bison, a general purpose parser generator:
http://www.gnu.org/software/bison,

-122 -

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Bibliography

SGI, The standard template library:
http://www.sgi.com/tech/stl/stl_introduction.html

D. v. Heesch, Doxygen:
http://www.stack.nl/~dimitri/doxygen/

Autoconf, an automated configuration script generator:
http://www.gnu.org/software/autoconf,

Automake, an automated makefile generator:

http://www.gnu.org/software/automake/

C. W. Fraser, R. R. Henry, and T. A. Proebsting, "BURG - Fast Optimal Instruction Selection and
Tree Parsing", SIGPLAN Notices, 27(4): 68-76, April 1992.

C. W. Fraser and D. Hanson, "A Retargetable C Compiler: Design and Implementation",
Addison-Wesley, 1995. ISBN 0-8053-1670-1.

J. Dias and N. Ramsey, "Converting Intermediate Code to Assembly Code Using Declarative
Machine Descriptions", Proceedings of the 15th International Conference on Compiler
Construction (CC 2006), pages 217-231, Vienna, Austria, March 2006.

J. W. Davidson and C. W. Fraser, "Register Allocation and Exhaustive Peephole Optimization",
Software - Practice and Experience, 14(9): 857-865, September 1984.

Quick C-- Compiler:
http://www.cminusminus.org/qc--.html

-123 -

Index

Index
B

Basic block 27, 31
BURG 108

C

Compiler 7, 9, 25

CGiS compiler 23, 27, 89
Constant folding 96
Constant propagation 26, 96
Constant vectorisation 96
Control flow graph 27
Copy elimination 95
Copy propagation 95

D

Dead code elimination 26, 94
Debugger interface (tpmg) 87

F

Finite state automaton 31, 33
Fragment program 12

G

GPGPU language
Brook for GPUs 20
CGiS 21

GPU 9, 12

GPU shading language
Cg 18
High Level Shading Language 17
OpenGL Shading Language 16
Sh 18

I

Implicit condition 53, 83
Item pattern 40

M

Match 55
Memory function 36

Extended memory function 43
Moore's Law 6, 11

P

Pattern matcher 31, 54
Multi-pass matching 59
Single-pass matching 55
Worst-case runtime 66

Pattern matcher description language 72

Pattern matcher generator 9, 31, 70
Phase ordering problem 26, 28
Pixel shader 12, 14
Predicate object automaton 36
Profile 31, 54
Profile (tpmg) 75

Inheritance 75

R

Recognizer 108

Regular Language 33

RenderMan Shading Language 15

Replace pattern 48

Rule 31, 48, 50
Worst-case runtime 64

Rule (tpmg) 76
Inheritance 76, 81
Replace pattern 79
Search pattern 76

Rule set (tpmg) 74

S

Search pattern 48
Sequence pattern 40

State function 36

State transition diagram 34

T
Template library (tpmg) 70, 87
\"

Vertex program 12

Vertex shader 12

Virtual machine 9

Von Neumann architecture 6, 9

A\
Wildcard pattern 40

- 124 -

	I. Introduction
	1. History of Computation
	2. Programming Languages
	3. Compilers and Retargetable Pattern Matchers

	II. Background
	1. General-Purpose Programming on the GPU
	1.1. History
	1.2. Architecture
	1.3. Languages
	1.3.1. RenderMan Shading Language
	1.3.2. GLSL
	1.3.3. HLSL
	1.3.4. Cg
	1.3.5. Sh
	1.3.6. Brook for GPUs
	1.3.7. CGiS

	2. Compilers
	2.1. General Design
	2.2. CGiS Compiler Design
	2.2.1. Internal Representation
	2.2.2. Compiler Structure
	2.2.3. Code Generation

	III. Theory
	1. General Idea
	2. Theoretical Background
	2.1. Basics
	2.2. Finite State Automaton
	2.3. Predicate Object Automaton

	3. Pattern Matcher Theory
	3.1. Pattern
	3.2. Rule
	3.3. Pattern Matcher
	3.3.1. Single-Pass Matching Mode
	3.3.2. Multi-Pass Matching Mode

	3.4. Complexity
	3.4.1. Rule
	3.4.2. Pattern Matcher

	IV. Pattern Matcher Generator
	1. Overview
	2. Pattern Matcher Description Language
	2.1. Outline
	2.2. Rule Set
	2.2.1. Profile
	2.2.2. Rule
	2.2.3. Implicit Functions

	3. Generated Pattern Matcher
	4. Debugger Interface

	V. Compiler Integration
	1. Prerequisites
	2. Modifications to the CGiS Compiler
	2.1. Code Generation
	2.2. Code Optimisation
	2.3. Competitive Comparison
	2.3.1. Code Generation
	2.3.2. Code Optimisation
	2.3.3. Runtime

	VI. Related Work
	1. BURG
	2. Recognizer

	VII. Future Work
	VIII. Conclusion
	1. Invoking tpmg
	2. List Sorting
	3. Calculator

