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Abstract

Shape analysis is concerned with statically analyzing programs that perform destructive
updating on dynamically allocated heap storage. The analysis aims at proving structural
properties of the allocated heap space. In recent years, a parametric shape analysis frame-
work proposed by Sagiv, Reps, and Wilhelm has been instantiated to create shape analyses
which were able to prove partial correctness of many interesting heap-manipulating pro-
graims.

We! give an overview on this framework and develop instantiations of it that are capable
of proving partial correctness of operations on 2-3-4 tree structures. 2-3-4 trees are the
simplest form of B-trees. B-trees themselves are a ubiquitous data structure used, for
example, in file systems, database systems, and - more recently - peer to peer systems.
Their widespread use makes implementations of this data structure a prime objective for
an automatical verification. However, their complex structure (compared to other trees)
has prevented such a verification so far. We give an extensive introduction to B-trees and
their variations as well as an overview on their range of applications. Based on our shape
analyses on 2-3-4 tree operations, we identify the remaining challenges in doing a shape
analysis of (general) B-trees. We present promising approaches to overcome those chal-
lenges.

Our analyses and theoretical considerations are based on object-oriented Java implemen-
tations of B- and 2-3-4 trees.

' The use of the plural pronoun is customary even in solely authored research papers and theses. Therefore,
the author of this thesis is also referred to by we.
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1 Introduction

Shape analysis is concerned with statically analyzing programs that perform destructive
updating on dynamically allocated (heap-) storage in order to determine heap invariants
describing the heap-allocated data structures arising during program execution. The re-
sults of such an analysis can be used to understand and to verify the analyzed program.
Additionally, they also yield valuable information for debugging, compile-time garbage col-
lection, instruction scheduling, and parallelization [WSRO0].

Shape analysis is a generic term denoting different techniques attempting to infer proper-
ties of the heap and the linked structures built within. Each technique relies on a sophis-
ticated heap abstraction that abstracts the in general infinite set of possible heap shapes
to a finite one but still preserves enough information to show that invariants do hold
[HRO5]. Heap abstractions characterizing the entire heap include reachability matrices
[HHN94, GH96, GH99|, shape graphs [KLR02, SRW98|, and, most recently, three-valued
logical structures [SRW02, RSW04]. Contrary to those, abstractions characterizing single
heap cells are investigated by Rugina et al. [HR05, CR06a, CR06b, Rug04|.

Another popular technique utilizes separation logic [Rey02] to abstract structure seg-
ments, i.e. segments of the structures arising in the heap during program execution
[DOY06, GBCO06].

Another interesting approach utilizes extended tree automata to abstract program configu-
rations [BHRV06b, BHRV06a|. Amir Pnueli proposed a shape analysis by predicate abstrac-
tions |BPZ05|. Wies and Podelski combined key ideas of three-valued logic and predicate
abstraction into a new symbolic approach to shape analysis using so called boolean heaps
[Wie04, PWO05]. The usage of decidable monadic second order logic has led to the shape
analysis tool PALE (Pointer Assertion Logic Engine) in which the program to analyze is
encoded in logic with explicit loop and function call invariants [JJKS97, EMS00, MS01].

In this thesis we rely on a parametric framework for shape analysis via three-valued logic,
presented in detail in [SRW02|, which can be instantiated in different ways to create shape
analysis algorithms that provide different degrees of precision. The theoretical background
behind this framework as well as further developments and tools implementing the frame-
work are summarized and reviewed by M. Jensen in his Master’s Thesis [Jen05].

The before mentioned framework for shape analysis was firstly implemented in the tool
TVLA (Three-Valued-Logic Analyzer) [LA00, LAS00, LAMS04]. While TVLA and PALE
have similar goals, their underlying techniques are radically different. However, they seem
to be similarly precise and efficient [MS01]. Still, due to the fact that PALE cannot de-
termine loop invariants by itself and needs those given explicitly, we consider the analysis
framework implemented in TVLA to be more powerful.



1 Introduction

In the last couple of years, shape analysis by three-valued logic - or more precisely, TVLA
- was used to validate, among others, bubble- and insertion-sort algorithms operating on
linked lists [LARSWO0|, implementations of the abstract data type set (internally using a
singly-linked list or an unbalanced binary tree) [Rei05] as well as to prove that an imple-
mentation of the insertion operation for AVL trees preserves the tree’s balancing [Par05].
A generalization of the shape analysis framework was implemented as an extension to
TVLA - called 3VMC! - and used to verify safety properties of concurrent Java programs
[YahO1].

We will use TVLA in its version 3.0-alpha. Besides of version 3.0 being the latest version
of TVLA, two features made this version particularly appealing. Firstly, it supports in-
terprocedural shape analysis for cutpoint free programs. This allows for shape analyses
on realistic B-tree implementations encapsulating single operations on the tree into mul-
tiple methods. Secondly, compared to the version used in the related work given above,
revamping of the software resulted in a significant runtime improvement of up to a factor
of 50. This speedup was obtained by employing techniques from the database community
- such as query optimization and semi-naive evaluation - in order to reduce the cost of
extracting information from shape descriptors and performing abstract interpretation of
program statements and conditions [BLARS07].

1.1 Overview

This thesis is organized and structured as follows. In Chapter 2, we introduce general
terms and definitions that are used in several chapters throughout the thesis. Chapter 3
gives a self-contained overview on the shape analysis framework proposed by Sagiv et al.
we later base our analyses on. A brief overview on the range of applications for B-trees and
their history as well as formal definitions for this data structure and its most important
variations are given in Chapter 4. In Chapter 5, we present shape analyses for various op-
erations on 2-3-4 trees, identify remaining problems with doing similar analyses on general
B-trees, and present solutions to these problems. We conclude in Chapter 6.

Most of our proofs can be found in Appendix A while the source code of the tree imple-
mentations, the input files for TVLA and J2TVLA, and other files needed to reproduce
our results can be found in Appendix B.

13VMC is integrated into TVLA since version 0.91.
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2 Terms and Definitions

In order to avoid unnecessary confusion and/or misunderstandings we start with defining
some terms and notions that we will use in the subsequent chapters.

2.1 Directed Trees

Definition 1 A directed graph is a tupel (V, E), where V is a set of nodes, E CV xV
the set of directed edges.

The edge e = (v1,v2) € E is said to initiate from v; and terminate at vs.

In this thesis, we define a directed tree as follows.

Definition 2 A directed tree is a directed graph T = (V, E), where V is its finite node set,
E its edge set, with the following additional properties:

1. T is the empty tree or there exists exactly one node at which no edge terminates. Or
more formally:
V=0V @3reV:Aee€ E:e terminates in r)
We call r the root of T.

2. When ignoring all directions of edges any two nodes of T are connected by a unique
path.

We call L = {n € V| He € E : e initiates from n} the set of leaves of T. A single node
n € L is called a leaf.

This is pretty much a standard definition, however, we wanted to clarify that we consider
a directed tree to have only a finite number of nodes (and hence a finite number of edges)
and that there exists a unique root node if the tree is not empty.

2.2 Natural Numbers

To avoid any confusion whether we want the set of natural numbers, denoted by N, to
contain 0 or not, we define 1 to be the smallest element of N. We further refer to the set
of natural numbers including 0 as Ny. Hence, Ny = N U {0}.

We use N>* as an abbreviation for the set {n € Njn > k}.

11



2 Terms and Definitions
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3 Shape Analysis Foundations

Shape analysis concerns the problem of determining heap - or shape - invariants for pro-
grams that perform destructive updating on dynamically allocated memory. We will de-
velop a shape analysis fitting into a parametric framework for shape analysis proposed in
[SRW02]. A key innovation of this framework is to represent the heap allocated store that
can arise during program execution using 3-valued logical structures.

We will give an introduction to this framework by summarizing the main techniques, ob-
servations, and theorems. We will also define key concepts and vocabulary that we will
later use in our analysis. For a more detailed treatment of the framework, we refer to
[SRW02]. Other, similar overviews and summaries of this framework can also be found in
[Jen05] and [Rei05].

3.1 Parametric Shape Analysis via 3-Valued Logic - A
Short Overview

The overall approach to shape analysis the framework suggests can be summarized as
follows.

1. Concrete stores can be represented using 2-valued logical structures. Therein, the
interpretation of unary predicates encodes the contents of program variables. Inter-
pretations of binary predicates encode contents of pointer-valued structure fields (or
reference attributes of objects).

2. 2-valued first order logic with transitive closure can be used to describe properties of
stores like reachability, (a-)cyclicity, and so on.

3. Kleene’s 3-valued logic can be used to relate concrete stores to abstract stores. Kleene
logic’s third truth value is interpreted as unknown which makes it very useful in the
presence of summary nodes about which we only have partial information.

4. In the 3-valued world we can utilize summary nodes to keep a finite number of logical
structures.

5. The Embedding Theorem ensures that information obtained from the 3-valued world
is compatible to that of the 2-valued world.

With those key ideas in mind, we will now introduce the utilized concepts in more detail.

13



3 Shape Analysis Foundations

3.2 Representing Stores

Stores are represented by logical structures. Concrete stores are encoded by 2-valued logi-
cal structures, abstract stores by 3-valued logical structures. Formally, a logical structure
S over a wvocabulary of predicate symbols P is a tuple (U® ). Where U® is a universe
of individuals and ° a function mapping each predicate symbol p of arity k and possible
k-tuple of individuals from U® to a truth value. In a 2-valued logical structure ¢ maps to
{0,1} (0 representing false and 1 representing true) while in a 3-valued logical structure
the mapping is to {0,1,1/2} where 0 stands for false, 1 for true, and 1/2 for unknown.
We encode concrete stores in 2-valued logical structures as follows: individuals represent
heap cells, pointer variables to the heap are represented by unary predicates which are true
for the heap cell the respective variable points to. Reference fields of objects (or structures)
are represented by binary predicates.

2-valued logical structures can be intuitively graphically represented as depicted in Figure
3.1 which lists structures representing linked lists of length < 4.

Name | Logical Structure Graphical Representation
! unary preds. binary preds.
So |indiv.|:17|y|t|e|
unary preds. binary preds.
SE indiv.|z|y|t|e|| n |u1 x>@
Ul 1{0|0|0|u1] O
unary preds. binary preds.
Sh indiv. |z |y|t]|e n |ul|u2 "
2 w1 |1]{0]0|0||ur| 0|1 x> =
uz2 |0]{0](0|0||u2|{ 0|0
unary preds. binary preds.
indiv yltie|| n|ul|u2|us
| [ BB Y@ @@
uz |0]{0]0|0||u2| 0|0 |1
uz |0]{0]|0|0||uz| 0|00
unary preds. binary preds.
indiv. |z |y|t|e| | n |u1 |uz |us|us
b wp |1{0]0|0||ug|O0O|1|0|O
S " n n
L BRER R R | -@r @@
uz |0]{0|0(0||us| 0|0 [O0]1
ug |0]{0]0|0||ua| O |0 |00

Figure 3.1: 2-valued logical structures representing singly-linked lists of length < 4, taken
from [SRW02]

14



3.3 Semantics of Program Statements

By encoding stores as logical structures, questions about properties of stores can be an-
swered by evaluating formulae expressing those properties. The property holds or does not
hold, depending on whether the respective formula evaluates to 1 or 0, respectively, in the
logical structure. This observation is known as the Property-Extraction Principle.

3.3 Semantics of Program Statements

Similar to the extraction of store properties, also the expression of the semantics of the
program statements is based on evaluating formulae. The concrete semantics of a program
statement st are captured by a set of predicate-update formule. Let o be the store before
statement st and o’ the store that arises after st is evaluated on o. Let further o be
encoded in S. A collection of predicate-update formula consisting of one formula for each
predicate in the vocabulary of S allows one to obtain the logical structure S’ that encodes
o’. When evaluated in S, the predicate-update formula for a predicate p determines the
value of p in 5"

For an abstract interpretation of program statements we need an abstract semantics that
must be able to represent every possible runtime situation and does not yield too many
unknown values. However, combining our observation that the semantics of program state-
ments can be expressed by logical formulae together with the fact that evaluating a formula
in a 3-valued structure S is safe with respect to an evaluation in any 2-valued structure
represented by S, yields an abstract semantics. We can just evaluate the predicate-update
formulae of the concrete semantics on 3-valued structures.

Sagiv et al. formulated this within the so called Reinterpretation Principle:

Evaluation of predicate-update formule for a statement st in 2-valued logic captures the
transfer function for st of the concrete semantics. FEvaluation of the same formule in
3-valued logic captures the transfer function for st of the abstract semantics.

3.4 Expressing Concrete Semantics

We start by defining the syntax of formulae for a first-order logic with transitive closure.
Let P ={p1,...,pn} be a finite set of predicate symbols.

Definition 3 (Formula) A formula over the vocabulary P is defined inductively by:
o The logical literals 0 and 1 are atomic formule with no free variables.

o For every p € P of arity k, p(v1,...,vx) is an atomic formule with the set of free
variables {vy, ..., vx}.

e v = vy is an atomic formula with free variables vi and vy.

15



3 Shape Analysis Foundations

o Let o1 and po be formule whose sets of free variables are Vi and Vy, respectively,
then o1 A\, 1V g and 1 are formule with sets of free variables ViUV, ViU Vs,
and V7, respectively.

o Let v be a formula whose set of free variables is {vy, vy, ..., vp}. Jv1.@ and Yvy. are
both formule whose respective set of free variables is {vy, ... vy }.

o (Transitive Closure) If v is a formula with the set of free variables V' such that vs, vy &
V' then (T'C vy,v9.0)(vs,v4) is a formula with free variables (V\{v1,ve}) U {vs,v4}.

We also use several shorthand notations. For example, ¢ = ¢y (implication, shorthand
for =1 V @9) and 1 < ¢y (equivalence, shorthand for (o1 A va) V (—1 A —2)).

Definition 4 (2-Valued Interpretation) A 2-valued interpretation of the language of
formule over P is a 2-valued logical structure S = (U®,1°) as defined earlier so that %
maps each predicate symbol p of arity k to a truth-valued function:

Sp): (U%)" = {0,1}

Definition 5 (Assignment) An assignment is a function that maps free variables to in-
dividuals.

{’Ul,’UQ,...} |—>US

For the remainder of this thesis, we assume all assignments arising in the discussion of
some formula p to be defined on all free variables of . Such assignments are also called
complete for .

Definition 6 (Meaning) The 2-valued meaning of a formula ¢ under an assignment «,
denoted by [o]5 (o), yields a truth value in {0,1}. Again, we define the meaning of a
formula inductively:

e For an atomic formula consisting of a logical literal | € {0,1}, we define the meaning

of | as
115 () =1

e For an atomic formula consisting of a predicate p(vy, ..., v), we define
(o1, )] (@) = 5) (@ (v1) ... ()
e For an atomic formula v = ve, we have

1 a(v)) = a(vs)

[v1 = v]5 (a) = {0 a(v) # alvy)

16



3.5 Meaning of Program Statements

o For a formula built from subformule o1, pa, and the logical connectives A, V, and
-, we define

[or Agels (@) = min{[]3 (), [e2]5 (@)}
[orV @a]3 (@) = maz {[p]5 (@), [#2]3 ()}
[~el5 (@) = 1-[@]5 (o)

e For a formula having a quantifier as its outermost operator, we define

[Vo.gl (@) = minlels (afv— u))

[Fv.¢]3 (@) = mazfel3 (afv — u))

ueU?s

o If ¢ is a formula of the form (TC vy, ve.0)(vs,vy) then

[(TC vy, v2.0)(vs,v4)]5 (@) =

: s
max “min el (afvr — ug,va — uigq])
nZl,ul,“.,unJ’,lEUS, 26{1 ..... TL}

a(vg)=uy,a(vg)=uny41

A logical structure S and an assignment « are said to satisfy ¢ if [¢]5 (o) = 1. We denote
that a structure S and an assignment « satisfy a formula ¢ by S, a = ¢ and write S |= ¢
it S, = ¢ Va.

By 2-STRUCT|[P] we denote the set of 2-valued structures.

3.5 Meaning of Program Statements

The new values of every predicate p after evaluation of a statement st are defined via
predicate-update formulae gpfot.

Definition 7 (P Transformer) Let st be a program statement, and for every k-ary pred-
tcate p in vocabulary P, let goff be the predicate-update formula over free variables vy, ..., vy
defining the new value of p after evaluation of st. Then the P transformer associated with
st, denoted by [st] : 2-STRUCT|P| — 2-STRUCTI[P], is defined as follows.

[st](S) = (U, Apdug, ... w9315 ([v1 > ua, ..o o > wil)).

3.6 Collecting Semantics
We will now define a shape analysis on concrete structures using the previous concepts and

notations. Assume G to be the control-flow graph of the program we wish to analyze. For
each vertex v of G we want to compute ConcStructSet|v], the potentially infinite set of

17



3 Shape Analysis Foundations

structures that may arise on the entry to v for some potential input structure. We compute
ConcStructSet[v] as the least fized point in terms of set inclusion of the following system
of equations:

ConcStructSet[v] =

{(0,0)} if v = start
U {[st(w)](S) | S € ConcStructSetjw]|} (1)

w—veEE(G), weAs(G)

U U {S | S € ConcStructSetjw]} (2)
w—vEeE(G), weld(d) otherwise

U U {S|S e ConcStructSet|w] and S | cond(w)}  (3) '
w—veTH(G)

U U {5 S e ConcStructSet[w] and S | —cond(w)} (4)

\ w—veFb(G)

In this system of equations, As(G) denotes the set of assignment statements. Hence, (1)
captures the effects of assignments. Id(G) denotes the set of uninterpreted vertices, (2)
captures their effects. The edge sets Th(G) and Fb(G) represent the true and false branches,
respectively, from branch points. cond(w) denotes the formula for the program condition
at w. Hence, (3) and (4) handle conditional branches by transferring only such structures
arising at w that satisfy the condition associated with the respective edge.

In general, a least fixed point is not always computable due to the possibly infinite number
of structures arising at a program point. However, the abstract semantics based on this
concrete semantics will overcome this problem.

3.7 Representing Sets of Stores Using 3-Valued Logic

We advance by showing how 3-valued logical structures can be utilized to represent sets
of concrete stores. We then relate concrete to abstract structures and finally develop an
abstract semantics.

3.7.1 Kleene's 3-Valued Logic

Kleene’s 3-valued logic adds to the 2-valued logic with its two definite truth values true and
false a third, indefinite value. We denote this third value which can be read as unknown
by 1/2. We distinguish the information order and the logical order of those truth values.
The information order captures (un-)certainty or - in other words - indicates which value
contains more definite information. The logical order indicates potential truth. Figure 3.2
visualizes these two orders on truth values. Figure 3.3 defines the logical connectives for
3-valued logic.

We define 3-valued logical structures and 3-valued interpretation analogous to their 2-
valued counterparts.

18



3.7 Representing Sets of Stores Using 3-Valued Logic

1

1/2

1/2
(a) Information Order  (b) Logical Order

Figure 3.2: The semi-bilattice of 3-valued logic.

A0 1/2 1 Vo 12 1 1]
00 0 0 010 1/2 1] [0 1
1210 1/2 1/2| |1/2]1/2 1/2 1| [1/2|1/2
10 1/2 1 11 1 1 1] 0

Figure 3.3: Definition of the logical connectives in 3-valued logic.

Definition 8 (3-Valued Interpretation) A 3-valued interpretation of the language of
formulee over P is a 3-valued logical structure S = (U®, (%), where U® is a set of individuals
and 1° a mapping from predicate symbols to truth-valued functions:

Sp): (U5 —{0,1,1/2}

The 3-valued meaning of a formula ¢, analogous to the 2-valued world denoted by [¢]35 (c),
yields now a truth value in {0,1,1/2}. The inductive definition of the meaning of ¢ is the
same as in Definition 6 with the following modification for the case of ¢ being of the form
V1 = V2.
0 avy) # a(ve)
[ = vo]5 (o) =< 1 a(vi) = avy) and ¥(sm)(a(vy)) =0

1/2 otherwise

Where the predicate sm formalizes the notion of a summary node, i.e. an individual of the
3-valued world which may represent more than 1 individual from corresponding 2-valued
structures.

As with 2-valued structures, 3-valued logical structures can also be graphically represented:
predicates with truth value 1/2 are represented by dotted lines, summary nodes are drawn
doubly circled.

Furthermore, we say that S and « potentially satisfy ¢ (denoted by S, a =5 ) if [¢]5 (o) =
1/2V[p]5 (o) = 1. Again, we write S |=3 ¢ if for every assignment « the formula S, o =3 ¢
holds. The set of 3-valued structures is denoted by 3-STRUCT|P U {sm}|.

19



3 Shape Analysis Foundations

3.8 Embedding into 3-Valued Structures

The concept of embedding provides a way to relate 2-valued and 3-valued interpretations.
We assume every 2-valued structure has a predicate sm which is always false for all indi-
viduals. Under this assumption, we can define an embedding as follows.

Definition 9 (Embedding Order, Embedding) Let S = (U®,.%) and S' = (U%,.%")
be two logical structures and f : U® — U a surjective function. f embeds S in S', written
as S T S, if (1) for every predicate symbol p of arity k and all uy, ... u, € UY

Sp)(uy, .. u) E S ) (fw), ..., flug))
and (2) for all ' € UY
({ulf(u) = u'}| > 1) E 5 (sm) ().

S can be embedded in S’ (denoted by S T S’) if there exists a function f such that S T/ S'.

The concept of tight embeddings allows for a minimization of information loss when mul-
tiple individuals of S are mapped to the same individual in S’. For a definition a tight
embeddings we refer the reader to [SRW02].

Embeddings additionally provide a way to define the potentially infinite set of concrete
structures represented by a single 3-valued structure.

Definition 10 (Concretization of 3-Valued Structures) Let S be a 3-valued struc-
ture. The set v(S) of 2-valued structures represented by S is defined as

v(S) = {5 € 2-STRUCT[P] | S*C S}

The Embedding Theorem states that if S T/ S’ then every information extracted from S’
via a formula ¢ is a conservative approximation of the information extracted from S via
. For a proof of this theorem as well as a more formal formulation, we again refer the
reader to [SRW02].

The concepts introduced so far combined with the Embedding Theorem provide us with:

e a systematic way to use an abstract 3-valued structure to answer questions about
properties of concrete 2-valued structures,

e the assurance that evaluating a formula on a single 3-valued structure instead on
all 2-valued structures represented by the 3-valued structure (again, which may be
infinitely many) is safe and, in particular, definite values in the 3-valued world mean
definite values in all concrete 2-valued structures.
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3.9 Bounded Structures

3.9 Bounded Structures

The presented shape analysis framework of Sagiv, Reps, and Wilhelm guarantees termina-
tion for programs containing loops by keeping the number of potential structures arising
during the analysis finite. The mechanism ensuring this is the concept of Canonical Ab-
straction. Before explaining this concept in detail, we need the following definition.

Definition 11 (Bounded Structure) A bounded structure over vocabulary P U {sm}
is a structure S = (U,15) such that for all uy,uy € U (uy # uy) there exists an abstrac-
tion predicate symbol p € A such that 1°(p)(ui) # °(p)(uz). We denote the set of such
structures by B-STRUCT[P U {sm}].

A direct consequence of this definition is that there is an upper bound on the size of struc-
tures S € B-STRUCT|P U {sm}|, namely |[U®| < 3. This limitation on the sizes of the
structures stems from the fact that every abstraction predicate can take any of the three
truth values for every individual.

The concept of canonical abstration provides a mechanism to obtain such bounded struc-
tures.

Definition 12 (Canonical Abstraction) The canonical abstraction of a structure S,
denoted by t_embed.(S), is the tight embedding induced by the following mapping:

t_embed.(u) = Upe A () (w)=1}, {peAS () (1) =0}
The name ugpe 4,5 (p)(u)=1},{pe.A|S (p)(w)=0} 18 called the canonical name of individual w.

We conclude this section with a reformulation of the Abstraction Principle which gives us
a method of collapsing structures that always yields bounded structures. The idea is to
partition individuals into equivalence classes according to their sets of unary abstraction-
property values. Every structure S® is then conservatively represented by a condensed
structure S in which each individual of S represents an equivalence class of individuals
from S%.

3.10 Abstract Semantics

We can now define a simple abstract semantics based on canonical abstraction and the
reinterpretation principle. This semantics collects for every vertex v of the control-flow
graph a finite set of 3-valued structures StructSet[v] which describes at least all 2-valued
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3 Shape Analysis Foundations

structures in ConcStructSet[v].

StructSet|v] =

({(0,0)} if v = start
U {t_embed,. ([st(w)]3(S)) | S € StructSetjw]} )
w—vER(G), weAs(G)
U U {S | S € StructSet[w]}

w—veFR(G), weld(G)

U U {S| S € StructSet[w] and S |=5 cond(w)}

w—veTH(G)

U U {S|S e StructSet|w] and S =3 —~cond(w)}

w—veFb(G) )

otherwise.

The abstract meaning function for a statement w, denoted by [st(w)]s, is identical to
[st(w)] with the exception of formule being evaluated in 3-valued logic.

3.11 Additional Concepts and Vocabulary

In this section, we present some additional concepts which will allow us to formulate a
more refined abstract semantics. We also introduce some vocabulary and definitions that
will be used in the description and definition of our analyses in Chapter 5.

3.11.1 Core and Instrumentation Predicates

We distinguish two types of predicates, core and instrumentation predicates. Core predi-
cates are used to state facts about the store and to describe program semantics. The unary
predicates introduced to represent pointer variables and the binary predicates modeling
reference fields of objects we described earlier are examples of core predicates. Instrumen-
tation predicates record information derived from other predicates and are defined in terms
of a formula over core predicates. For the sake of abbreviation and readability, we also
allow the defining formula of an intrumentation predicate to contain other instrumentation
predicates, as long as formulae do not become mutually recursive. Table 3.1 gives some
examples of instrumentation predicates used in shape analyses of linked-list structures.
Formally, our set of predicates P is disjointly partitioned into the set of core predicates
C and the set of instrumentation predicates Z. The Instrumentation Principle states that
when S is a 3-valued structure representing the 2-valued structure S% by explicitly stor-
ing the values a formula ¢ has in S% in S, it is sometimes possible to extract more precise
information from S than by just evaluating ¢ in S. This clearly motivates the use of instru-
mentation predicates. The increase of precision comes from several sources. Evaluating the
defining formula of an instrumentation predicate may result in an indefinite value, while
the predicate itself yields a definite value. We are allowed to use instrumentation predicates
as abstraction predicates and thereby use them to partition the heap by keeping definite
truth values and thus more precise information about the respective partitions. Another
obvious argument is that a 3-valued structure in which some instrumentation predicates
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‘ Predicate ‘ Defining Formula ‘ Intended Meaning ‘

is[next](v) Juy, ve.(v1 # v A next(vy,v) A next(vy,v)) | visshared, that is two
or more objects have
a next-reference point-
ing to v.

c[next](v) Fuy.(n(vy, v) A next*(vi, vq)) v resides on a cycle.

r[next, z](v) for | Jui.(x(v1) A next*(vy,v)) v is reachable from

each z € Var program variable x via
next-references.

Table 3.1: Examples of Instrumentation Predicates.

yield definite values may represent less structures than a structure with no instrumentation
predicates.

3.11.2 Focus

Still, analyses might yield too many indefinite values. The focus operation is used to
further increase precision. The key idea behind focus is to make those parts of the heap
concrete on which the currently considered program statement operates. More formally,
the focus operation takes a set of formule F' and generates a set of structures on which
every formula in F' yields a definite value for all assigments. In general, the set of structures
returned by focus may be infinite. However, [SRW02| gives an algorithm implementing a
focus-operation for a certain class of formulae needed for shape analysis that always returns
a finite set of structures.

For example, consider a statement x; = xo where x; and x5 are pointer/reference variables.
The statement lets x; point to the heap cell x5 currently points to. Hence, we might choose
F = {x(v)} so that for all heap cells we have a definite value whether or not x5 currently
points to this cell.

3.11.3 Coerce and Consistency Constraints

The focus operation may create structures that are inconsistent or contradictory and do
not represent any concrete structures. The operation also may yield structures that are
not as precise as they could be regarding to the information available in instrumentation
predicates. The coerce operation is intended to sharpen such structures and discard struc-
tures that do not represent concrete structures. Behind these insights lies the Sharpening
Principle.

Definition 13 (Sharpening Principle)
In any structure S, the value stored for 1°(p)(uy,...,ux) should be at least as precise as
the value of p’s defining formula y, evaluated at uy, ..., u.
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3 Shape Analysis Foundations

Furthermore, if 1°(p)(uy, ..., uy) has a definite value and o, evaluates to an incomparable
definite value then S is a 3-valued structure that does not represent any concrete structures
at all.

In order to sharpen or discard structures coerce utilizes compatibility constraints, also
referred to as consistency constraints.

Definition 14 (Compatibility Constraint) A compatibility constraint is a term of the
form 1> o, where @y is an arbitrary formula and psy s either an atomic formula or the
negation of an atomic formula. A 3-valued structure S and an assignment « are said
to satisfy 1 > g, denoted by S,a |= p1 > pa, if whenever o is an assignment such that
[1]5 (o) = 1, we also have [p2]5 () = 1.

We say that S satisfies o1 > s, denoted by S |E p1 > @, if for every a it holds that
S,a = o1 > s,

Hence, if ¢; evaluates to 1 but s evaluates to 0 the structure is discarded (eliminating
structures not representing concrete structures). If ¢; evaluates to 1 and o to 1/2 the
interpretation of predicates is changed such that ¢, also evaluates to 1 (sharpening of
structures). In all other cases where ¢, evaluates to 0 or 1/2, the coerce operation commits
no changes on the structures.

3.12 The Shape Analysis Algorithm

We can now define a more refined abstract semantics which utilizes the before-mentioned
focus and coerce operations.

StructSet[v] =

{(0,0)} if v = start
Ut _embed, (@Te_\rce ([[st(w)]]g ( foas\F(w)(smctset[w]))))
w—vEE(G),
weAs(G)
U U {58 e StructSet[w]}
w—veB(Q),
e — otherwise
U U ¢ embed,(S) S € coerce (focusF(w) (StructSet[w]))
w—veTH(G) and S =3 cond(w)
U U ¢ embed(S) S € coerce (focusp(w) (StructSet[w]))
w—veFb(G) and S 3 —cond(w)
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4 B-Trees

In this chapter, we will briefly review the history of B-trees and their variations as well as the
range of applications of such tree structures. We will give a formal definition of a B-tree that will
be used throughout the rest of this thesis. Formal definitions are also given for the most important
types and variations of B-trees: the 2-3-4 trees, the B+ trees and the B*-trees. We also discuss
the basic algorithms for working with B-trees: contains, insert and delete.

4.1 Introduction

B-trees are balanced search trees. They can be viewed as a generalization of binary search trees.
In a binary search tree, each node stores a key k as well as a left and a right pointer. The keys
stored in the subtree pointed to by the left pointer are smaller than &, those in the subtree rooted
at the node pointed to by the right pointer are greater. A node of a B-tree may store many keys,
from a handful to several thousands, depending on the field of application. As with binary trees,
each stored key is a dividing point separating the range of keys stored in the subtrees pointed to
by adjacent child pointers. Hence, the branching factor of a B-tree may be very high. Figure 4.1
shows a simple B-tree. For now, we will stick to this intuitive definition of a B-tree. However, in
Section 4.2, we will define B-trees formally.

9][1218] |24 26 29] 44 55 89

Figure 4.1: Graphical representation of a B-tree

B-trees were introduced by Bayer and McCreight in 1971 to organize and maintain an index for a
dynamic random access file [BM72]|. By the end of the seventies, B-trees and their variations have
become a, de facto, standard for file organization. Comer gives an elaborate review on B-trees,
their success in the seventies, and their variations, especially the B+ tree which we will discuss in
Section 4.5, in [Com79].
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4 B-Trees

Today, B-trees and their variants are still ubiquitous. In 2006, Hudzia et al. proposed a tree based
peer-to-peer network architecture utilizing a slightly modified B+ tree structure for discovery and
load-balancing operations [HKOO06]. Two years earlier, Crainiceanu et al. proposed the P-tree,
a new distributed fault-tolerant index structure for peer-to-peer networks, the key idea behind
which is to maintain parts of semi-independent B+ trees at each peer [CLGS04].

Besides those new applications in peer-to-peer systems, B-trees are still used in virtually all file
system implementations. The Reiser file system uses B+ trees to organize file system structures
such as file state data or directories (|[Rei, BCSZ03, BFH02|). HFS (Hierarchical File System)
organizes its complete cataloging structure in a B-tree [Bru90|. The NTFS file system uses a B-tree
structure for all folders to minimize the number of disk accesses that a hard drive must perform
to find a file [Mic|. Even distributed file systems employ B-trees as shown with the Google File
System [GGLO03]. Further examples for file systems that utilize B-trees are XFS which uses B-trees
for tracking free extents in the file system, to index directory entries, to manage file extent maps
that overflow the number of direct pointers kept in the inodes, and to keep track of dynamically
allocated inodes scattered throughout the file system [SDH*96, BFH02| which enables XFS to
support larger directories and efficiently manage free space [TV05]. As well as JFS [IBM], the
Cedar File System (CFS), FSD - the reimplementation of CFS - |Hag87|, and yFS where the
latter makes use of B*-trees for representing large files and directories to keep directory traversals
efficient [ZG03]. Recapitulatory, newer file systems often use B-trees to map logical file offsets
to physical disk addresses, to manage disk space, and to perform efficient lookup for files in the
name space [Isa03].

Relational databases (RDBs) also commonly rely on B-tree structures to organize indices in order
to retrieve a small number of desired records without having to scan the entire database (or an
entire table) [Kim02, IMM™04]. The usage of B-trees to manage indices is effectively a standard
in RDBs. Hence, pointing to literature documenting the usage of such trees in some concrete
RDB would virtually end up in a listing of all existing relational database systems. However, we
representative point out to MySQL [MyS07], Oracle Database [Dix01], and POSTGRES database
management system [SK91]| as examples for RDBs employing B-tree structures to store indices.
As a closing example of where B-tree structures are employed we point out that optimized index
structures for Resource Description Framework (RDF) database systems also rely on B-trees
[HDO05]. Storing and querying RDF data is one of the basic tasks within any Semantic Web
application. It seems that in this area a new field of application for B-trees and their ability to
efficiently handle indices is evolving.

4.2 Formal Definition

4.2.1 B-tree

Definition 15 Let h € Ny and t € N>, A directed tree T constitutes a B-tree if T is either
empty, 1.e. h =0, or has the following properties:

1. (P1) Each path from the root to any leaf has the same length h.

2. (P2) Each node with the exception of the root and the leaves has at least t children. The
root is either a leaf or has at least 2 children.
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4.2 Formal Definition

3. (P3) Each node has at most 2t children.

4. (P4) Each node holds between t — 1 and 2t — 1 index elements, except the root which may
hold between 1 and 2t — 1 index elements.

5. (P5) For each node v holds: if k is the number of index elements stored with v and v is not
a leaf then v has exactly k + 1 children.

6. (P6) Within each node, index elements and child pointers are logically’ stored as a sequence
€0%0C1%1 - - - 1k—1Ck. The index elements are sequential in increasing order, i.e. % < %41,
0<1<k-—2. Inleaves , the child pointers (¢;, 0 <1 < k) are undefined. (See Figure 4.2
for a graphical representation of this node structure.)

7. (P7) Let Z(c;) be the set of all index elements stored in the subtree the (child) pointer ¢
points to. Then for all nodes the following statements always hold:
Vi € I(co):i < ig
A4 EI(Cj) : ij <1< ij+1, 1=12..k=2
Vi € I(Ck) o < ¢

Co | 9 | C1 | i1 | - |tg—1| Ck

/ / N

Figure 4.2: A node of a B-tree.

We call h the height of T and t the degree of T

We note that the properties 1) to 3) enforce the shape of B-trees, while properties 4) to 7) enforce
the organization and sortation of the index elements stored in the tree.

The given properties slightly differ from the original properties for B-trees given in [BM72]. The
most significant difference is that we say the number of children for inner nodes is in [t,2¢] and
hence the number of stored index elements in [t — 1,2t — 1]. Originally, nodes were allowed to have
between ¢t+1 and 2¢+1 children and to store between ¢ and 2¢ index elements. However, our choice
of these bounds aligns with that used in more recent literature, see for example [CLRS01]|. We will
see later that nodes storing between ¢t — 1 and 2t — 1 index elements can be split independent of
index element insertions. The original definition can only split nodes if a new index element is to
be inserted into an already full node. This also implies that with our definition implementations
of the insertion-operation can be done more efficiently. Another difference is that we explicitly
disallow B-trees of degree 1.

The height of such a B-tree is in O(logn), where n is the number of index elements stored in the
tree. The proof for this is fairly simple and given in [CLRS01]. One should keep in mind that the

'Implementations will probably use two separated data structures; one for the index elements and one
for the pointers.
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base of the logarithm can be very large and hence B-trees are commonly very flat compared to
other trees.

We call a node of a B-tree full if there are currently 2¢ — 1 index elements stored at this node.

4.2.2 Index Element

An index element is a tuple (k, ), where k € K is a key from some totally ordered key universe
K and « some data associated with this key.

We do not make too specific demands about the keys, although in practice simple integers should
be an appropriate choice. However, we need that the keys are unique and that there is a strict
total order on the keys. Or more formally:

VEki1,ko € K: k1 < ko D kg < K1 (4.1)

V(k1, 1), (K2, ) © K1 # K2 (4.2)

This strict order on the keys is used to imprint a strict order on the index elements by the following
equivalence

(m,al) < (KVQ,O(Q) = K1 < K2 (4.3)

4.3 Algorithms

B-trees are commonly needed to support element insertions, element deletions, and to provide
a membership test to check whether a given element is stored in the tree. In this section, we
will briefly discuss how those three operations contains, insert and delete must perform in order
to be efficient and to preserve all B-tree invariants. The presented algorithms are based on the
description given by Cormen et al. [CLRSO01], rather than on the original algorithms given by
Bayer and McCreight [BM72]. This is done for two reasons. Firstly, the newer algorithms exploit
the modified properties of B-trees explained in Section 4.2 to improve their efficiency. Secondly,
a survey on actual B-tree implementations and descriptions confirmed that the newer ones are
commonly used.

This section, however, only gives a theoretical description of the B-tree operations. Actual im-
plementations of all these operations using Java as the implementation language can be found in
Appendix B.2.

4.3.1 The contains-Operation

The contains-operation performs a search in the tree in order to determine if a given index element
(K, @) is present. The operation starts its search at the root node. Each node, including the root,
storing k index elements keeps a sequence cpigcyiy . . . ig—1¢k as defined in (P6). We choose i; from
this sequence such that | = maz{m|iy, < (k,a)}. We now have to consider three cases:

Case 1 i = (k,). In this case, the algorithm has found the given index element and can
terminate with an appropriate return value.
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Case 2 We did not find such an i, i.e. {mliy, < (k,a)} = 0. In this case, we either continue
our search by choosing a new 4; from the sequence stored at the node pointed to by ¢y and again
considering these three cases. Or, if ¢g is not defined, the operation terminates with a return value
indicating that (k, «) is not stored in the tree.

Case 3 i is defined but not equal to the element we are looking for. In this case, we either
continue our search by choosing a new ¢; from the sequence stored at the node pointed to by ¢;41
and again considering these three cases. Or, if ¢; 41 is not defined, the operation terminates with
a return value indicating that (k, «) is not stored in the tree.

Obviously, for finding 4; we can either use a linear-search on cgigciiy . . . ix_1c or perform a binary
search on this sequence, resulting in a running time in O(¢ - h) and O(logt - h), respectively.
However, in most applications the critical factor is the number of node accesses, i.e. the height h.
Hence, we may just say, both approaches need O(h) node accesses and therefore there is no harm
in implementing the easier approach which uses a linear-search.

4.3.2 The insert-Operation

When inserting new elements, we want to exploit that our B-trees can split full nodes without
the need to first insert an element into the node we want to split. With the original definition,
full nodes could only be split when inserting a new element into. We start by introducing a split-
operation that we will afterwards use within our insert-operation.

The split-Operation

Let z be a full node and p(x) the parent node of x. We assume p(z) to be non-full. Hence, z stores
exactly 2¢t — 1 elements and p(x) at most 2¢t — 2. We can split x into two nodes without violating
any B-tree invariant. Let cgigciiy...c—19¢—1¢t - - -i9¢_9cot—1 be the sequence of index elements
and child pointers of node x. We create a new node 2’ which stores the sequence ¢; - - - 19¢_oco_1
and replace the sequence stored at x by cgigciiy...c,—1. The median element 4,1 is moved to
p(x) as a dividing point for x and /. Figure 4.3 and Figure 4.4 illustrate this splitting operation.
We can convince ourselves that all properties of B-trees are still intact:

1. (P1) still holds because x’ has the same parent node and thus the same height as z. All
child nodes of x have the same height as before regardless whether they moved to 2z’ or
stayed in z. We therefore (a) do not change the height of any existing node and (b) 2" will
be inserted at the same height as  and be a leaf node if z was a leaf node.

2. (P2), (P3), (P4), and (P5) still hold; both z and 2’ have exactly ¢ child nodes and ¢t — 1
elements, p(z) has at most 2t —2 4+ 1 = 2t — 1 elements stored and 2t — 1 + 1 = 2¢ child
nodes.

3. (P6) and (P7) still hold due to the fact that we set the sequences stored at x and 2’ to one
consecutive part of a valid sequence starting with a child pointer.

Obviously, splitting a node needs O(1) node accesses.
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||| ()
T Co Z'tfl e [ Cop—q

Figure 4.3: Situation before splitting.

C/ 11 C 7/ C// e p(l‘)
x Co | -+ | Ct—1 Ce | -+ |Cot—1| o'

Figure 4.4: Situation after splitting.

The insertNonFull-Operation

Let us assume we want to insert an index element ¢ into the tree rooted at node x and we know
that x is not full. We define an operation insertNonFull that operates as follows.
First, the algorithm checks whether x is a leaf node.

Case 1 =z is a leaf node. We then insert 4 into the sequence cgigciiy ... 1x_1¢) stored at x in
such a manner that property (P6) is not violated.

Case 2 <z is an inner node. In this case, we make a branching decision, i.e. we determine into
which child node ¢; of x the element i has to be inserted in order to preserve (P7). If ¢; is already
full, we split ¢; into ¢;° and ¢; and recursively call insertNonFull with arguments ¢ and ¢;° or ¢,
depending on whether ¢ is greater or less than the median element of ¢;. In the remaining case
that ¢; is not already full, we recursively call insertNonFull with arguments ¢ and ¢;.

The Final insert-Operation

The last thing we have to do is get rid of the assumption that we start the insertion with a non-full
node. The final insert-operation expects as parameters an index element ¢ and the root r of the
B-tree 7 is to be inserted into. The operation first checks whether r is already full which results
in two possible cases.

Case 1 r is full. In this case we have to create a new root-node x with no elements stored
and the former root r as its leftmost child, i.e. ¢o of x points to . We then split r and call
insertNonFull with 2 and i as arguments.
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Case 2 ris not full, hence we can directly proceed with our insertNonFull-operation.

We observe that our insert-operation does not violate any B-tree invariants and is able to insert
an index element into a B-tree in a single pass down the tree. Furthermore, insertions always take
place at leaf nodes. The original insertion algorithm would - in the worst case - need two passes.
One down the tree, through already full nodes that could not be splitted to an already full leaf
which is splitted after the new element was inserted. The median element that has to be passed
to the parent node would cause the parent to be splitted, too. This splitting would propagate
upwards the whole tree, up to the root. Resulting in a second pass up the tree.

The number of node accesses performed by the insert operation lies in O(h).

4.3.3 The delete-Operation

Similar to the insert-operation, we want to have the delete-operation perform a single pass down
the tree. For this reason we must ensure that only such nodes are entered by the algorithm that
store more than the minimum number of index elements. That is - except for the root node - at
least t elements.

The move- and join-Operations

We first consider what to do when we need to enter a subtree rooted at a node with the minimal
number of elements.

Let x be a node, p(x) the parent node of x and s = cpigciiy - .. ¢_19-1C19C141 - - - ig—1Ck the se-
quence stored at p(x) where ¢; is the child pointer pointing to . Let further s’ = ¢/gi’oc'1i'1 .. . ¢'1—2c/t—1
be the sequence stored at . Our tree properties guarantee that at least one sibling node exists.
Two cases may arise.

Case 1 One of the nodes pointed to by ¢;_1 or ¢4 stores more than ¢ — 1 elements. Our
restructuring of the tree will then move the greatest or the least element of such a sibling of x
to p(x), replacing 4; which moves to = as the least or greatest element there. Figure 4.5 and 4.6
illustrate this operation for the case that we move an element from the right sibling pointed to by
¢i+1- The procedure works symmetrically for taking an element from the left sibling. Note that
the element removed from the sibling node was a dividing point for two adjacent child nodes one
of whose child pointer has to be moved to x.

a | g |[aa| - |p(x)

Figure 4.5: Situation before moving an element to x.
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a | iy |G| oo [ p(o)
-1/ /! ; / /
x o Ui—2(C—1] U Co C1

Figure 4.6: Situation after moving an element to x.

Case 2 No sibling stores more than ¢t — 1 elements. In this case, we join z with one of its
siblings, resulting in a node storing 2¢ — 1 elements. Joining two neighboring nodes is in some
sense the exact reversal of the split-operation. Let x and y be the nodes we intend to join, ¢,
and ¢y, respectively, the pointers to x and y, and ¢ their dividing element in their common parent
node. Let s, and s, be the sequences of child pointers and index elements stored at x and y,
respectively. The join-operation removes 7 and ¢, from the sequence stored at the parent node and
then sets the sequence stored at node x to szis,. Figures 4.7 and 4.8 illustrate the aforementioned.

Cy i Cy | -+ | parent

Figure 4.7: Situation before joining x and y.

Cy | -+ | parent

Figure 4.8: Situation after joining x and .

In both cases node accesses are in O(1).

The Final delete-Operation

The delete-operation works similar to the (final) insert-operation. It starts at the root (which
holds always enough elements to allow for a deletion), makes a branching decision, and ensures
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that the next node to enter holds more than the minimum number of elements. To ensure this
the algorithm uses the move- and join-operations as described in the previous subsection. Once
the element to be removed, call it 4,, is found, the algorithm again has to distinguish between two
possible cases.

Case 1 The current node is a leaf. In this case, the algorithm can just delete 7, from the
sequence stored at the current node.

Case 2 The current node is an inner node. There exist again two possibilities. i, can be re-
placed by its predecessor or successor if the nodes ¢, and c¢,41, respectively, hold more than the
minimum number of elements. By predecessor of some index element ig we denote the index
element preceding 75 in the total order imprinted on them by their keys. Successor of ig denotes,
analogously, the element succeding ¢5. l.e. successor and predecessor of index elements do not
denote index elements logically stored next to those elements. The predecessor or successor of
course has to be deleted at its old position. This replacing is allowed because the predecessor of 4,
is the greatest index element in the subtree rooted at ¢, and its successor the least index element
contained in the subtree rooted at ¢,+1. Hence, property (P7) will not be violated. If ¢, and ¢, 41
store only t — 1 elements the algorithm joins those two nodes. Afterwards, i, can be removed from
the newly created node (which has 2¢ — 1 elements).

The last problem we have to deal with regarding the delete-operation is that it is still possible to
remove all elements from a non-leaf root node. This happens if the root node holds just 1 element
and its two child nodes are joined. In this case, we will delete the current root node and set its
only child, pointed to by ¢q after the join, to be the new root.

Since most of the elements stored in a B-tree reside in leaves, in practice, delete operations most of
the time act in one pass down the tree. When deleting an element in an inner node, the procedure
might have to back up after unsuccessfully trying to locate the predecessor in a node holding more
than ¢ — 1 elements. Overall, the number of node accesses needed to delete an index element from
a B-tree is in O(h).

4.4 2-3-4 Tree

We call a B-tree of degree t = 2 a 2-3-4 tree. Obviously, with ¢ = 2 each node of such a B-tree
can only have 2 (=t), 3 or 4 (= 2t) child nodes, which explains the name 2-3-4 tree.
This is also the simplest form of a B-tree as we do not allow B-trees of degree t = 1.

4.5 B+ Tree

A B+ tree is a B-tree that stores only keys of index elements at its inner nodes and complete
index elements, i.e. keys and data, at its leaves.

Definition 16 Let h € Ny and t € N>1. A directed tree T constitutes a B+ tree if T is either
empty, i.e. h =0, or has the following properties:
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1. (P1) Each path from the root to any leaf has the same length h.

2. (P2) Each node with the exception of the root and the leaves has at least t children. The
root is either a leaf or has at least 2 children.

3. (P3) Each node has at most 2t children.

4. (P4%) Each node holds between t — 1 and 2t — 1 keys from the key universe K of the index
elements, except the root which may hold between 1 and 2t — 1 keys.

5. (P5%) For each inner node v; holds: if k is the number of keys stored with v; then v; has
exactly k + 1 children. For each leaf node v; holds: if k is the number of keys stored with v;
then v; has exactly k pointers to data objects associated with the stored keys.

6. (P6%) Within each non-leaf node keys and child pointers are logically stored as a sequence
COROCIRT - - - Kk—1Ck- The keys are sequential in increasing order, i.e. s; < s;41, 0 <1 < k—1.
In leaf nodes the sequence consists of keys and pointers to their associated data, i.e. leaves
store a sequence KoogK10Q) ... Kg—104_,. We denote by o) a pointer to the data object .

7. (P7") Let S(c;) be the set of all keys stored in the subtree the (child) pointer ¢; points to.
Then for all nodes the following statements always hold:
Vi € S(co) : k < Ko
Ve € S(¢j) 1 kj <k < Kjy1, j=1,2,..,k—2
Vi € S(ck) : k-1 < K

I
bl b

Figure 4.9: A B+ tree.

B+ trees have some advantages over general B-trees. With B+ trees element deletions always
occur at leaves which allows for a simpler delete-operation. Also, not storing data in inner nodes
leaves more storing capacity for keys and thus may lead to a higher branching factor which
decreases the height of the tree and thus reduces the number of node accesses performed by the
operations, resulting in better running times.
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4.6 B*-tree

4.6 B*-tree

We define a B*-tree as a B-tree for which the stronger condition holds that each node except its
root is at least 2/3 full. Hence,

Definition 17 A B*-tree is a B-tree for which property (P4) is replaced by
(P4*) Each node holds between 2/3 - (2t — 1) and 2t — 1 index elements except the root which may
hold between 1 and 2t — 1 index elements.
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5 Shape Analysis of B-Trees and
Variations of B-Trees

5.1 Introduction

In this chapter, we present our shape analysis of 2-3-4 trees. We also establish - although just
theoretically - how a shape analysis on general B-trees can be implemented.

As 2-3-4 trees are a specialization of B-trees, namely their simplest form, a shape analysis of this
structure can be generalized to a shape analysis of general B-trees. We could also consider binary
trees to be a special form of 2-3-4 trees, by allowing exactly 2 child nodes per node and discarding
some balancing properties. By doing so it seems an obvious approach to generalize predicates
used in the shape analysis of binary trees and structures internally using binary trees in order
to cope with 2-3-4 trees. Additionally, some new predicates have to be introduced to keep track
of balancing properties. By keeping all predicates general enough to cope with binary and 2-3-4
trees, shape analysis of binary trees can be redone with the same set of predicates used to verify
our 2-3-4 tree implementation.

The remainder of this chapter is organized as follows. After a short section on how we generated
the control-flow graphs needed for shape analysis from Java implementations, we present in detail
our shape analysis of 2-3-4 trees. The last section of this chapter describes how our approach to
2-3-4 trees can be generalized and adapted to handle general B-trees.

5.1.1 Transforming Java into TVP

The implementations we are going to perform our shape analysis on are done in Java. TVLA,
however, requires the control-flow graph of the program to analyze supplied in a special format
called TVP (Three Valued Program) [MS04|. Transforming Java source code to TVP by hand
is a tedious and error-prone task. And even if we would translate a Java program by hand to its
control-flow graph, we would have to show that this control-flow graph is really corresponding to
the control-flow graph of the compiled Java program. To alleviate this procedure we could try to
translate Java byte code to TVP. But this work - done by hand - is still error-prone and tiresome,
especially considering the complexity of some of the operations on B-trees.

To overcome those problems, we utilize J2TVLA, a framework for building translation programs
that transform Java byte code (.class files) to TVP format (.tvp files) [MSSY02].

Statement of the Shape Analysis The shape analysis is performed not directly on our Java
implementations but on TVP code obtained from the Java classes. Therefore, we feel compelled
to discuss what such an analysis does state about the underlying Java implementation.
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Figure 5.1 shows how Java source code is transformed to the TVP code used in the analysis.

J2TVLA/SOOT
program transformation
javacc J2TVLA/SOOT m J2TVLA/SOOT
PJava .PC’lass .PSootIR . PTVP
program synthesis program synthesis/ program migration

program migration

Figure 5.1: Sketch: Transformation steps from Java source code to input code for the
analysis framework. We denote by P, the Java source code of a program, by
Priass its compiled byte code, by Psoorr its intermediate representation within
the Soot framework and J2TVLA, and by Pryp the program in TVP code.

The first transformation is done by the Java compiler (javacc): compilation of the Java sources.
J2TVLA then relies on the Soot framework to obtain an intermediate representation of the pro-
gram from the Java byte code [VRHS'99, Raj98, MSSY02|. After a dead variables elimination,
J2TVLA generates a TVP program from this intermediate representation.

As the figure shows, we distinguish three different kinds of transformations. Program syntheses
transform programs from one level of abstraction to another. Java source code is on a higher ab-
straction level than Java byte code, hence the compilation done by javacc is a program synthesis.
J2TVLA generates its internal representation from a 3-address code representation of byte code
(Jimple) that again is on a higher abstraction level than byte code itself. Our dead variables elim-
ination transforms the program to an observably equivalent program in the same representation
language. We call such a transformation just program transformation. Transformations from one
representation language to another are called program migrations if both representations are on
an equal level of abstraction.

Before putting the TVP program and the Java source code into relation, we start by defining
some vocabulary and concepts that allow us to formulate our concluding claim.

Definition 18 (observable behavior) Let P be some program. We call the sequence of outputs
Sout := P(sin) that P generates for a given sequence of inputs s;, the observable behavior of P.

Definition 19 (semantics-preserving) A program transformation T that transforms a given
program P into a program T (P) is semantics-preserving if the observable behavior of the program
T(P) is equal to that of P.

Formally speaking, let P be a program and T'(P) the program resulting from applying transforma-
tion T to P then T is semantics-preserving if and only if:

VP .V input sequence sin . P(sin) = (T'(P))(sin)

These are more or less standard definitions in work dealing with program analysis and program
transformation. However, they are built up on a very simple and limited concept of what a
(computer) program is. Nonetheless, these definitions are suitable for our scenario.
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Definition 20 (making a property visible) We say, we make a program property F' visible
if we add F' to the observable behavior of the program.

We note that making a property F of program P visible results in a new program P’. Furthermore,
P(s;iy) differs from P’(s;,) such that P’(s;,) additionally contains output dependent from or
describing F'.

Definition 21 (preserved property) Let T' be a semantics-preserving transformation. A pro-
gram property F of program P is called a preserved property under T of P if after making F
visible, resulting in program P’, it holds that

T(P)(sin) = (T(P))(sin)

for all input sequences s;,. Where T(P)" denotes the program obtained from program T(P) by
making F visible.

Example: Let P be a program with program variables u, v,z where u and v are pointers to two
heap cells joined in a linked list such that « has a pointer to v. Assume x to be a dead integer vari-
able, currently storing the value 3. Let T be a transformation that sets dead variables to 0. T is
a well-known semantics-preserving transformation. The property u and v are linked is preserved
under T as P' and T(P)" would both show them linked in their output. However, statements
about the value of x are not preserved under T as P’ and T'(P)" would generate different outputs
due to the different values of x.

We can now formulate the following claim.

Claim 1 The structure of trees built in the heap is a preserved property of the analyzed tree
operations under all transformations used to convert Java source code to TVP code.

Unfortunately, we are not able to prove this claim formally. However, we assume that (a) the
Java compiler works correctly and produces byte code that builds heap structures according to
the Java source code; and (b) the Soot framework correctly parses this byte code and builds
an appropriate intermediate representation. We can now argue that our dead variables elimina-
tion preserves the structure of trees in the heap. Only program variables can be dead variables.
Heap structures, however, are built by references between objects. We then have to assume that
J2TVLA transformes Soot’s intermediate representation of the program into TVP code such that
all heap manipulating operations are preserved.

TVP code describes a control-flow graph where edges are labeled with actions - or better action
macros - which represent program statements. Hence, actions define the semantics of the TVP
program and we have to make sure that those actions preserve the effects of the heap manip-
ulating operations of the previous program representation. Therefore, we have to finally argue
about the correctness of the action definition. Actions are defined in terms of update formulee or
preconditions. We will later, when presenting our analyses, describe all formula used to capture
the effects of actions on the heap states and argue their correctness.
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Usage of J2TVLA J2TVLA provides a default engine that generates a control-flow graph
containing only skip-statements. Creating a meaningful translation depends on the predicates
used in the shape analysis and is thus left to the user of J2TVLA.

The default engine does categorize common language constructs (assignments, conditional branches,
etc.) and translates those using output text specified via a properties files which contains per de-
fault only skips. Hence, most of the time adjusting the default properties file to one’s predicates
suffices to create appropriate translations of class files with J2TVLA.

However, if more complex translations are needed J2TVLA’s default translator class' can be
extended and the default treatment of language constructs can be overwritten to meet one’s re-
quirements.

As we had to change the treatment of some language structures to cope with our B-tree imple-
mentations, we implemented our own translator class - BTreeTranslator - which changed some of
J2TVLA’s default behavior. The source code of this class as well as the properties file we used to
translate our class files to the TVP format can be found in the Appendix B.

Modifications on J2TVLA During the work on this thesis, we revised J2TVLA’s live vari-
able analysis and its corresponding transformation on the control-flow graph. Our intention was
to set all variables to null as soon as they become dead in order to speed up the shape analysis
using TVLA. A speed-up can be achieved as program variables correspond to pointer predicates
which in turn are used as abstraction predicates. Hence, true pointer predicates can lead to finer
abstractions in the form of more complex logical structures. In the case of dead variables, more
complex structures due to predicates corresponding to such variables are unwanted.

In our revised version, J2TVLA adds for every dead variable a set-null statement to the produced
TVP code. By assigning null to dead variables, we allow for smaller structures during the shape
analysis as dead variables - after the transformation - cannot point to any heap cells and thus
prevent abstracting these anymore. Our analysis seems to become non-conservative by setting
pointer predicates corresponding to program variables to 0 instead of setting them to 1/2. How-
ever, dead variables correspond to dead predicates which we are allowed to set to 0. Setting dead
predicates to 0 was already proposed in earlier work [Rei05, Man03].

During the implementation of our translator class we also did some refactoring on J2TVLA’s de-
fault translator class. This work consisted mainly of extracting methods following the well-known
Extract Method technique [FBBT99]. This simple refactorization allowed for a more selective
extention of the default translator by the BTreeTranslator class.

Our refactorizations and improvements will probably become part of the J2TVLA distribution.

5.2 Validation of a 2-3-4 Tree Implementation

In our Java implementation, 2-3-4 trees consist of Node234 objects. Every such node maintains
pointers to its up to four child nodes and to up to three IndexElement objects stored at the node.
Index elements store an integer value and maintain a pointer to some data object. During the
shape analysis phase, logical variables, i.e. individuals, may represent either a node or an index
element. Therefore - contrary to previous work [LARSWO00, Rei05] - we have to distingiush two

Lj2tvla.Translator
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public class Node234 {
public Node234 left;
public Node234 cleft;
public Node234 cright; public class IndexElement {
public Node234 right; public int key;
public Object content = null;
public IndexElement iel; }
public IndexElement ie2;
public IndexElement ie3;

(a) Node class (b) Index element class

Figure 5.2: Java classes representing nodes and index elements, respectively.

types of logical variables which results in some additional and more complex predicates. Our set
of selectors Selg is simply the union of the sets of selectors of each class. In our case, the union
of Selnodeass = {left,cleft, cright,right,iel,ie2,ie3}, the set of all references maintained at an
Node234 object, and Selr,derElement = {content}, the set of references of an IndexElement object.
Integer and boolean attributes of objects are directly associated with the corresponding logical
variables.

Our level of abstraction during the shape analysis additionally allows us to ignore the content
reference of index elements, so that for the remainder of this work, we set the set of selectors,
denoted by Sel, to Selg\{content}. By Vars we denote the set of program variables.

5.2.1 Contains-Operation

We consider a membership test as described in 4.3.1 and implemented as shown in Figure 5.3. In
our shape analysis, we limit ourselves to prove that if the contains operation is performed on a
valid 2-3-4 tree structure which

1. stores an index element equal to the search argument then a reference/pointer to the node
at which this element is stored is returned by the operation

2. does not store an index element equal to the search argument then a null pointer is returned
by the operation

Hence, we do not prove that height properties are preserved. At this point we argue that a
membership test just traverses the structure without doing any restructuring and thus, if operating
on a valid structure, will preserve this validity. We also do not attempt to verify that our contains
operation runs in O(h) by showing that at most h nodes are visited during the traversal.

Predicate Definitions

As outlined in the introduction to this chapter, we borrowed predicates from existing work on
binary trees and generalized them to additionally handle 2-3-4 trees. The original definitions of
those predicates stem from [Rei05].
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T

public static Node234 contains(
Node234 node,
IndexElement ie ) {
Node234 result = null;
while( node != null ) {
if( node.ie3 != null
&& node.ie3.key <= ie.key) {
if( node.ie3.key == ie.key){
result = node;
node = null;

¥
else
node = node.right;
¥
else if( node.ie2 != null

&& node.ie2.key <= ie.key ) {
if( node.ie2.key == ie.key){
result = node;
node = null;

¥
else
node = node.cright;
¥
else if( node.iel != null

&& node.iel.key <= ie.key ) {
if( node.iel.key == ie.key){
result = node;
node = null;

¥
else
node = node.cleft;
¥
else if( node.iel != null

&& node.iel.key > ie.key )
node = node.left;
else
node = null;
}

return result;

Figure 5.3: Java implementation of contains with its corresponding control-flow graph.
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Core Predicates The following core predicates were used to logically represent heap states. In
our abstraction, logical variables correspond to objects of the Java program. We also say these
variables correspond to heap cells to keep in line with the nomenclature of previous work. In order
to do so, we require each object to fit in one (abstract) heap cell.

To express that a program variable z points to some object v, we define a unary predicate z(v). To
capture the fact that selector sel of object v; points to ve, we define a binary predicate sel(v,v2).
Concrete values of the key attribute of index elements are modeled by the kge-predicate. Where
kge(v1,v2) holds if and only if the value of the key field of object vy is greater than or equal to
the value of the key field of vo. We assume kge to be reflexive and transitive during the analysis.
For variables corresponding to tree nodes which do not maintain a key field, kge is not defined
and may at any time be set to any truth value.

For technical reasons?, we introduce the unary predicate heapcell which holds for all heap cells,
i.e. for all logical variables. The predicate heapcell is not used as an abstraction predicate.
Compared to the corresponding core predicates of binary trees very little has changed. The set
Sel became larger and dle(vy,v2) was replaced by kge(vi,v2) to match J2TVLA’s normalization
of comparisons.

Table 5.1 gives an overview of the core predicates.

| Predicate | Intended Meaning |
z(v) Vz € Vars Pointer variable z points to heap cell v.
sel(vy,vy) Vsel € Sel | Selector sel of vy points to vs.
kge(vy, vq) The key(s)/data stored at heap cell v; is greater than or
equal to the key(s)/data stored at heap cell vs.
heapcell(v) Holds for all v.

Table 5.1: Core Predicates

Instrumentation Predicates We used the following instrumentation predicates to gain pre-
cision and model properties of 2-3-4 trees not expressible by core predicates alone. The binary
predicate down (v, v2) is used to express that v; has a reference pointing to ve. The antisymmetric
predicate downStar(vi,ve) is defined as the reflexive transitive closure of down and can thus be
used to record reachability between heap cells or objects. To record reachability from variables to
heap cells or objects, we use the unary predicate r[x](v), where & € Vars is some variable name.
Hence, r[z](v) holds if and only if heap cell v can be reached from the heap cell that variable
currently points to. We declare the reachability predicates as non-abstracting predicates, with
the exception of the predicate modeling reachability from the program variable node which we
do use as an abstraction predicate. The predicate isStore(v) states that heap cell v holds an
index element, i.e. an object at which a key value is stored. This predicate is not used as an
abstraction predicate. With the ¢sStore-predicate heap cells representing index elements and tree
nodes, respectively, can be told apart during the analysis. In order to exploit this and the fact that

In consistency rules, the free variables of the body and the head must match exactly [MS04]. The
predicate heapcell is used to artificially add a free variable used in the head to the body.
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cells representing index elements cannot have any successor nodes, we define another instrumen-
tation predicate storeProp. The unary non-abstracting predicate storeProp(v) states that v has
the store property which means if isStore(v) holds it must hold that =3 u down(v,u). In other
words, being an index element implies not having any references pointing to other objects. We
note again, that in our abstraction, we do not consider the content attribute of the IndexElement
class.

To achieve the needed precision for the analysis we have to introduce predicates capturing general
facts about tree structures. The first thing we wanted to express is that some node u lies logically
left to some other node v. By lying logically left we mean the following. The logical structure of
an 2-3-4 tree node can - following from our definitions in Chapter 4 - be thought of as depicted
in Figure 5.4 where an ordering is impressed on the reference pointers. Now, our terminology
becomes obvious. If we say a heap cell u lies logically left of some cell v, we mean that the refer-
ence pointing to u precedes the reference pointing to v in this impressed ordering. We utilize the

left | iex |cleft| ieq |cright| ies |right

A VRN

Figure 5.4: Logical representation of a 2-3-4 tree node.

predicate leftO f(u,v) to express that u is (logically) left-adjacent to v, i.e. u is directly followed
by v in the imprinted logical ordering. In the definition of this instrumentation predicate, we have
to additionally consider the case of the node being a leaf. In leaf nodes, i.e. in nodes where no
left pointer exists, iel is left of ie2 and ie2 left of ie3.The predicate le ftO f Star(u, v) is defined as
the non-reflexive transitive closure of the leftO f-predicate. We extend this local view on a single
node to a global view by introducing a predicate capable of expressing that a heap cell v is situated
in a subtree (logically) to the right of u. Technically, we do this by defining rightSubTree(u,v)
to hold if there exists some w such that leftO fStar(u,w) A downStar(w,v) holds. Analogous,
we introduce the predicates rightO f(u,v), rightO f Star(u,v), and le ftSubTree(u,v).

We are now ready to establish what it means for a structure to be a tree. From the many equiva-
lent definitions of treeness® that are commonly used we choose to derive the following equivalent
definition:

Definition 22 Let T = (V, E) be a connected directed graph. T is a tree if and only if ¥ vi,v9,v3 €
v
leftOfStar(vy,vy) = —(downStar(vi,vs) A downStar(ve,vs))

3Let T = (V, E) be an undirected graph then the following statements are equivalent:
1. T is a tree.
. T is is acyclic and connected.
. Any two vertices of T' are connected by a unique path.

2
3
4. T is connected and 7" — e is not connected for all e € E.
5. T is acyclic and T + e is not for all e € ((‘2/) \E)
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The equivalence of this definition to a commonly used definition of a directed trees is given in
Appendix A.

Besides knowledge about the structural properties of trees we need some knowledge about the
ordering of stored values during the analysis. We therefore use the predicate inOrder() to express
that if le ftSubTree(u,v) holds then the value of a key stored at v is strictly less than the value
of a key stored at u. While rightSubTree(u,v) implies that the key stored at w is strictly less
than that stored at v. To collect heap cells identified as storing values greater than some given
value in one summary node during the analysis, we add the predicate kgelz,left](v) to our set
of abstraction predicates. For collecting cells that store values less than a given value, we also
add a predicate kge[z,right](v). Where, in both cases, z denotes a program variable and the
predicates read as according to the ordering imprinted by the kge predicate, the heap cell pointed
to by z resides in the tree left and right, respectively, of v.

Our analysis still needs some knowledge about the properties of 2-3-4 trees. We therefore introduce
a predicate p2_5(v) to model properties (P2) and (P5) as defined in Chapter 4. Properties (P3)
and (P4) are given implicitly by the selectors and (P1) is not relevant for our analysis of the
contains method. The remaining properties (P6) and (P7) that define the ordering of stored
values within the tree are already modeled by the inOrder()-predicate.

To express that a given key value equal to the value associated with heap cell u is stored at a
heap cell v or at a heap cell reachable from v we use the binary predicate isElement(u,v).

We also need to state that the kge-predicate models the >-relation on numbers. This is done by
the greRelation()-predicate which states that if kge(a,b) does not hold then kge(b, a) must hold.
Table 5.2 lists all instrumentation predicates with their defining formulae and a brief description
of their intended meanings.

Compared to the instrumentation predicates used in the analyses of binary trees, we observe that
the downStar|[sel](v)- (sel € {left,right}) predicates were not redefined to cope with 2-3-4 trees.
Those predicates were used to record reachability where the first selector is given (sel). While
traversing a binary tree the first selector chosen from some node v determines whether we are
descending into the left or the right subtree rooted at v. Hence, those predicates were subsumed
by our leftSubTree- and rightSubTree-predicates.

] Predicate ‘ Defining Formula ‘ Intended Meaning ‘
down(v1, v2) V sereser s€l(v1, va) There is a pointer refer-
ence from vy to vg
downStar(vi,va) down*(vy, v2) Records reachability;
vg is reachable from vy
rlz](v) Yo € Vars Fuy. (z(v1) A downStar(vy,v)) Records reachabil-
ity from a (pointer)
variable x
isStore(v) ' . (iel(v',v)Vie2(v',v)Vie3(v',v)) | Heap cell v corresponds
to an index element
leftO f(v1,v2) Jw. ((31\,/52)31(7”’ v1) A SQ(w,vg)) vy is pointed to by
where (s1,s2) € {(s1,s0) € | @ pointer that is log-
Sel x Sel | s is left-adjacent to sq)} | ically left-adjacent to
the pointer pointing to
U2
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] Predicate

‘ Defining Formula

Intended Meaning ‘

leftO fStar(vi,v2)

leftOf*(vy,v2)

Non-reflexive transitive

closure of leftOf(u,v)

rightSubTrees(vy, v)

Jw.(leftO fStar(vi, w)
downStar(w,v2))

vy resides in a subtree
rooted at a pointer log-
ically right of vy

rightO f (v, v2)

Jw. <(81\7/S2)81(w, v1) A sz(w,w))
where (s1,s2) € {(s1,52) € Sel x

Sel | sy is right-adjacent to so)}

vy is pointed to by
a pointer that is log-
ically right-adjacent to
the pointer pointing to

V2
rightO f Star(vy, ve) leftOf*(vy,v9) Non-reflexive tran-
sitive closure of

rightO f(u,v)

Vars

Fuy. (z(v1) A kge(v,v1) A —kge(v,v))

leftSubTree(vy,va) Jw.(rightO f Star(vi, w) A | vy resides in a subtree
downStar(w,v2)) rooted at a pointer log-
ically left of vg
treeness YV wi,v9,v3 leftOfStar(vi,ve) = | If treeness holds a
—(downStar(vy, v3) A | structure represents a
downStar(vy,v3)) tree
inOrder|kge] Yy, va.(right SubTree(vy, va) = | Al index elements
(kge(ve,v1) A —kge(vi,v2))) A | stored within the tree
Yy, va.(leftSubTree(vy, va) = | structures are properly
(—=kge(ve,v1) A kge(v1,v2))) ordered
kgelx,left](v) Vz € |Vx € Var | The key of v is greater
Vars Fuy. (z(v1) A kge(v,v1) A —kge(v1,v))| than the key of the ob-
ject pointed to by x
kge[x,right](v) Vx € |Vx € Var | The key of v is less than

the key of the object
pointed to by x

p2_5(v)

(Fuleft(v,u) < I ceft(v,u))
(3 u cright(v,u)

3 o cleft(v,u'))

3 u cright(v,u)

J ' ie2(v,u)) A (3 u right(v, u)
3 u eright(v,u’))

(3 u right(v,u) = 3 v ie3(v,u)
(F u ie2(v,u) = I o iel(v,u)
(3 u ied(v,u) = 3 o ie2(v,u)
(3 u left(v,u) (v,u)
(3 u,v ie3(v,u) A cright(v,
(3 o' right(v,u))

b>>>>>0 0 >4 >

(P2) and (P5) hold for
heap cell v
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] Predicate ‘ Defining Formula ‘ Intended Meaning ‘
isElement(vy, v2) Fequal-(downStar(ve, Veguai) A | There exists an object
kge(Vequat, v1) N kge(vi,Vequar) A | with a key equal to the
isStore(Vequal) key of vy in the (sub-)
tree rooted at vo
greRelation() YV u,v —kge(u,v) = kge(v,u) For any two numbers
a,b holds that —(a >
b)=b>a

Table 5.2: Instrumentation Predicates

Consistency Rules We use the set of consistency constraints* given in Figures 5.5 and 5.6.
All consistency constraints have to be implied by the core and instrumentation predicates. Oth-
erwise we might discard structures that are valid according to our predicate definitions. We give
formal proofs that all used consistency constraints are indeed implied by the predicate definitions
in Appendix A.
The used predicates file in TVP format can be found in Appendix B on page 102. In this
file, we partioned the set Vars of program variables into two disjoint sets PVarVisible and
PVarInvisible. This was done because we generated the control-flow graph not from Java source
code but from compiled Java byte code (see Section 5.1.1) and the Java compiler introduced many
additional program variables. While these additional variables need to be tracked in the analysis,
we would like to exclude them from being shown in TVLA’s output graphs. Hence, we use two
sets of variables one of which is visible in the output while the other is not printed.

Action Definitions

We describe the effects of program statements on our logical structures by the following predicate-
update formulae. We only give update formule for statements actually occuring in our implemen-
tation of the contains-method.

Assignments We need update formula for several kinds of assignment statements. We need
to model the effects of assigning a reference/pointer to a reference/pointer (AssignRefToRef),
assigning a field reference to a reference (AssignFieldRefToRef), and setting a reference to null
(SetNull). Our analysis uses the predicate-update formula listed in Table 5.3.

Conditionals The control-flow graph generated from our Java implementation contains 8 dif-
ferent types of conditional statements. Table 5.4 lists those 8 statements. Instead of a predicate-
update formula we give a precondition formula which is evaluated in order to check whether this
action should be performed. The action is performed, i.e. the respective edge in the control-flow
graph is traversed, if the formula is closed and evaluated to 1 or 1/2. In the case that the formula
contains free variables the action is applied for each assignment to those free variables that poten-
tially satisfies the formula. All action-definitions for conditionals involving key comparisons, i.e.

*We omit the heapcell(v)-predicate in the formule.
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Vv, w (3 u treeness() A rightSubTree(u,v) A leftSubTree(u, w)
Vv, w (3 u treeness() A rightSubTree(u,v) A le ftSubTree(u, w)
Vou,w ((3u (leftSubTree(u,v) Aiel(w,u))

Vo,w ((Fu (leftSubTree(u,v) Aiel(w,u))

Vo, w ((Fu (leftSubTree(u,v) Adel(w,u))

Vou,w ((3u (leftSubTree(u,v) Aiel(w,u))

Vo,w ((Fu (leftSubTree(u,v) Aiel(w,w))

Vo, w ((Fu (leftSubTree(u,v) Aie2(w,u))

Vou,w ((3u (leftSubTree(u,v) Aie2(w,u))

Vou,w ((3u (leftSubTree(u,v) Aie2(w,u))

Vo, w (3 u (leftSubTree(u,v) Aied(w,u))

Vo,w ((Fu (rightSubTree(u,v) Adel(w,u))

Vo,w ((Fu (rightSubTree(u,v) Aie2(w,u))

Vo, w (3 u (rightSubTree(u, v) Aie2(w,u))

Vo,w ((Fu (rightSubTree(u,v) Aie2(w,u))

Vou,w ((Fu (rightSubTree(u,v) Aied(w,u))

Vo, w (3 u (rightSubTree(u, v) Aied(w,u))

Vou,w ((Fu (rightSubTree(u,v) Aied(w,u))

Vo, w (3 u (rightSubTree(u, v) Aied(w,u))

Vou,w ((Fu (rightSubTree(u,v) Aied(w,u))

V' v (treeness()

Y u,v (isStore(v) A storeProp(v)

V u,v (—~downStar(u,v)
A (3 u down(u,v) Au #u')
V sel € Sel ¥ u,v (—~down(u,v)

V sy € Sel V sg € Sel\{s1} ¥ u,v (treeness() A s1(u,v)

vV VvV VvV VvV VvV VvV VvV VvV VvV V VvV V V V V V V V V VvV VvV VvV VvV Vv V

A v down(v,v"))
—down(u,v))
~down(u’, v))
—sel(u,v))

—89(u, v))
~downStar(v,w))
~downStar(w, v))
—cleft(w,v))
—cright(w, v))
—right(w,v))
—ie2(w, v))
—ie3(w,v))
—eright(w, v))
—right(w,v))
—ie3(w,v))
—right(w,v))
—left(w,v))
—left(w,v))
—cleft(w,v))
—iel(w,v))
—left(w,v))
—cleft(w,v))
—cright(w, v))
—iel(w,v))
—ie2(w, v))

48

Figure 5.5: Consistency constraints.
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YV vy, 09 (p2_5(v1) A
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Figure 5.6: Consistency constraints.
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Statement Corr. Java | Update Formulae
Statement
AssignRefToRef T = Ta; 2(v) and r[z1](v) =

r1(v) = x
rlzs] (v)

z1(v) = 3 v x2(v1) A x3(v1,0)
and r[zl](v) = 3 vy, vy xa(vy) A
x3(v1, v2) A downStar(vq, v)
SetNull x = null; zl(v) =0 and r[z](v) =0

AssignFieldRefToRef | 21 = x5.73;

Table 5.3: Predicate-update formulae for assignments.

actions corresponding to Java expressions of the form z1.key O zo.key (O € {==,>=, <=, =}),
contain a check (via TVLA’s message mechanism) to ensure that neither x; nor zo points to null
which would cause a null-pointer exception during program execution.

Statement Corr. Java | Precondition Formula
Statement

IsNullVar r == null —(3 v x(v))

IsNotNullVar x 1= null Jv z(v)

IsEqualRef Ty == Ty Vv z1(v) & x5(v)

[sNotEqualRef 1 1= 19 (Vv z1(v) & x2(v))

GreaterEqualKey x1.key >= xo.key | vy, vy x1(v1) Aza(va) Akge(vy, vo)

NotGreaterEqualKey | z1.key < xo.key 3 v,ve xi(vy) A me(ve) A
ﬁkge(,Ul),UQ)

EqualKey xr1.key == xo.key | 3 wvi,ve  xi(v1) A wo(v2) A
kge(vy,va) A kge(ve, v1)
NotEqualKey xri.key '= xo.key | (3 wvi,ve x(v1) A x2(v2) A

kge(vy,va) A kge(ve, v1))

Table 5.4: Precondition formulse for conditionals.

Input Structures

Our contains method takes two arguments: a reference to a 2-3-4 tree structure and a reference
to an index element. The input structures for the analysis should describe all concrete logical
structures such that

e the first argument is a reference to a valid 2-3-4 tree structure and
e the second argument is a reference to a valid index element.

Index elements are on our level of abstraction just single heap cells which makes the second
argument trivial to model. To describe all possible 2-3-4 structures we need two abstract logical
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$parameterl
$parameter0 ‘m g
.'kge
0
kge[$parameter left]=1/2 kge
kge[$parameter right]=1/2
n = {r,iel}
wp = {
heapcell = {r, ie}
$parameter0 = {r}
$parameterl = {ie}
downStar = {r->r, ie->ie}
r[$parameter0] = {r}
r[$parameterl] = {iel}
kge = { r->ie:1/2, ie->r:1/2,
ie->ie, r->r:1/2}
storeProp = {r, ie}
p2_5 = {r,ie}
kge [$parameterl, left] = {r:1/2, ie:1/2}
kge [$parameterl, right] = {r:1/2, ie:1/2}
greRelation = 1
treeness =1
inOrder =1
¥

Figure 5.7: Input structure with empty tree used in the analysis of contains.

structures. The first represents empty trees which again are just single heap cells. The second
represents all non-empty trees and consists of two nodes. One representing the root node and a
summary node representing all other nodes and index elements linked in the tree. Figures 5.7 and
5.7 give a detailed specification for those two structures.

Analysis

We can use our predicates to formulate what property we want to show in our analysis, namely
that at the exit node of the control-flow graph of contains the following formula is satisfied

F = treeness() A inOrder() A (Yv p2_5(v)) A
((Fret, k1, ko, r $parameter0(r) A $parameterl(ky) A isElement(ki,r) A return(r)
Ndown(ret, ka) A kge(ka, k1) A kge(k1, k2))
V(3k1, ko, r Sparameter0(r) A Sparameterl(ky) A —isElement(ky,)
A= (Tret return(ret))))
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$parameter1

$parameter0 ) ‘w ge

- " isElement, " kge

1
keel$ 1left=1/2
kge[Sparameter] right]=1/2

SEl kee

‘el *cz ie3 feft right

downStar

scleft - isElement

2
isStore=1/2
kge[$parameterl left]=1/2
kge[$parameter] right]=1/2

ight

n = {r, ts, iel}

%p = {
heapcell = {r, ts, ie}
sm = {ts:1/2}
$parameter0 = {r}
$parameteri = {ie}
down = {r->ts:1/2, ts->ts:1/2}
downStar = {r->r, ie->ie, ts->ts:1/2, r->ts}

r[$parameter0] = {r, ts}
r[$parameteri] = {ie}

iel = {r->ts:1/2, ts->ts:1/2}
ie2 = {r->ts:1/2, ts->ts:1/2}
ie3 = {r->ts:1/2, ts->ts:1/2}
left = {r->ts:1/2, ts->ts:1/2}
cleft = {r->ts:1/2, ts->ts:1/2}
cright = {r->ts:1/2, ts->ts:1/2}
right = {r->ts:1/2, ts->ts:1/2}
kge = { r->r:1/2, ie->ie, ts->ts:1/2,

r->ie:1/2, ie->r:1/2,

r->ts:1/2, ts->r:1/2,

ie->ts:1/2, ts->ie:1/2 }
isStore = {ts:1/2}
storeProp = {r, ts, ie}
left0f = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
left0fStar = { ts->ts:1/2, r->ts:1/2,

ts->r:1/2, r->r:1/2, ie->ie:1/2}
rightSubTree = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
right0f = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
right0fStar = { ts->ts:1/2, r->ts:1/2,
ts->r:1/2, r->r:1/2, ie->ie:1/2}

leftSubTree = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
p2_5 = {r,ts,ie}
kge [$parameterl, left] = {r:1/2, ts:1/2, ie:1/2}
kge [$parameterl, rightl] = {r:1/2, ts:1/2, ie:1/2}
isElement = {ie->r:1/2, ie->ts:1/2, ts->r:1/2, ts->ts:1/2}

greRelation = 1
inOrder =1
treeness =1

Figure 5.8: Input structure with non-empty trees used in the analysis of contains.
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5.2 Validation of a 2-3-4 Tree Implementation

This formula captures exactly the properties we stated at the beginning of this chapter as the
intented proof obtained from our shape analysis.

We append two conditional statements to the exit node of the control-flow graph of the program
to collect valid output structures at one program point and invalid structures at another. This
is done in order to simplify - and to rule out human errors within - the evaluation of the out-
put structures. We consider an output structure valid if it satisfies a control formula C, invalid
otherwise. We choose Ut to be F' which encodes what we aimed at proving with our shape analy-
sis. Hence, we add two conditional statements as given in Table 5.5 to our set of action definitions.

] Statement \ Precondition Formula \

StructuresOK treeness() A inOrder() A (Yo p2 5(v)) A
(3, ky, ke, root $parameter0(root) A
$parameterl(k,) A isElement(ky, root) A
V
A

return(r) A down(r,ks) N kge(ke, k1) A kge(ki, ko))
(Fky, ko, root Sparameter0(root) A Sparameterl(k;)
—isElement(ky,root) A =(3r return(r)))
StructuresNOK | (treeness() A inOrder() AN (Mo p2 5()) A
(3r, ky, ko, root $parameter0(root) A
$parameter1 (k) A isElement(ky, root) A
V
A

return(r) A down(r,ks) N kge(ke, k1) N kge(ki,ks))
(Fky, ko, root $parameter0(root) A $parameterl(k;)
—isElement(ky,root) A =(3r return(r))))

Table 5.5: Preconditions of additional conditional statements.

The key idea is that the analysis is able to find the invariant that all nodes potentially storing
a key value equal to the one the method scans for are rooted at program variable node. Hence,
we introduce two abstraction predicates for heap cells identified as storing only keys less than or
greater than the one scanned for. If the analysis is able to find the invariant, all heap cells not
directly pointed to by some program variable can be summarized in one of three nodes. They
are either added to (1) a node summarizing all heap cells reachable from program variable node
which - during the analysis - corresponds to cells reachable from program variable r0. (2) A node
summarizing all cells identified as storing keys greater and (3) less, respectively, than the key
scanned for. The same idea was successfully used with binary trees. However, in our case we have
to remember that the key greater or equal predicate is not defined for heap cells representing node
objects. Again, such objects store a set of keys and are not associated with a single key value.
Therefore, the analysis has to consider a fourth summary node collecting cells corresponding to
node objects visited during the analysis. In order to force the analysis not to summarize such
cells with those reachable from r0 we used reachability from 0 as an abstraction predicate. This
yields the desired effect. Every heap cell not directly pointed to by a program variable and visited
during the analyzed algorithm is collected in exactly one of (at most) four summary nodes. The
analysis can also establish that every cell not reachable from 70 cannot store a key equal to the
one of the second argument of the method.
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In total, the analysis computed 17 possible output structures. For all of which our control formula
Cy was satisfied. Figure 5.9 shows some examples of those output structures.

To conclude the analysis of the contains method, we like to note that although the analyzed imple-
mentation was a direct adaption of the algorithm presented in Chapter 4.3.1 a programer might
choose a different approach. The presented algorithm works in a backward fashion, considering
the keys stored at a node in a reversed order. A forward approach in which the algorithm consid-
ers the keys in ascending order seems more intuitive. Figure 5.10 shows such an arguable more
intuitive implementation. We did a shape analysis on this method - which we called contains2
- utilizing exactly the same set of predicates, update rules, and input structures. The analysis
produced the same set of output structures at the exit point of the program as in the analysis
of the first implementation. This suggests that our predicates are sufficiently general to be able
to prove partial correctness of various implementations of membership tests on 2-3-4 trees. This
claim is made under the assumption that all such implementations manage one program variable
pointing to the subtree in which an index element with a key equal to the one scanned for has to
be located. However, this seems to be a fairly reasonable assumption.

5.2.2 Insert-Operation

We do our shape analysis on an insert algorithm implemented slightly different than introduced
in Chapter 4.3.2. The way we presented the algorithm it starts with the method insert() which
calls the function insertNonFull(). The latter recursively calls itself until a leaf node is reached at
which the new key is eventually inserted. A closer look shows that this algorithm is tail recursive.
It can therefore easily be turned into an interation. The algorithm then just traverses the tree
from its root to the leaf in which the new key is to be inserted. On its way down the tree the split
operation is applied whenever an already full node would be traversed. We therefore decided to
implement the algorithm to work iterative rather than recursive.

Our iterative implementation had just two calls of the split() function so we decided to inline the
function for the analysis. During the inlining we observed that the first call of the split-function
has fixed arguments. We therefore just inlined the code of split() actually reachable with this
arguments. Figure 5.11 shows the Java source code of the insert implementation we are going to
analyze.

Excursus: Insert Implementations and Integer Arithmetic

The careful reader should have noticed that our implementation of insert uses pointer comparisons
to determine the number of index elements stored at a node. References are also used to determine
where to store the index element propagated to the parent node after a split operation. For 2-3-4
trees there is no reason not to use references for those tasks. However, real-life implementations
often store an integer value indicating the number of stored index elements with a node object.
Such implementations can access this value directly when they need to obtain the number of
index elements stored at a node. Implementations of general B-trees (almost) always use inte-
ger values to indicate where keys are inserted after split operations. This is not surprising as it
seems natural to store index elements and child pointers in arrays and use indices to address them.
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nullary
inOrder
treeness

greRelation

$parameter0 2 return

S$parameter]

(a) Special case: root node is a leaf and stores the key we are looking for at its first index element.

nullary

inOrder

treeness
greRelation

$parameterQ OM ge
.'kge

$parameterl rl

0
kge[Sparameter1 left]=1/2
kge[$parameter] right]=1/2

(b) Special case: empty tree.

(c) General case: tree is non-empty and stores an index element with the given key value at some
inner node.

Figure 5.9: Sample output structures of the analysis of contains.
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Node234 result = null;
if( node.iel == null )
node = null;
while( node != null ) {
if( ie.key < node.iel.key )
node = node.left;
else if ( ie.key == node.iel.key ) {
result = node;
node = null;
¥
else if (
node.ie2 == null
|| ie.key < node.ie2.key )
node = node.cleft;
else if (
node.ie2 != null
&& ie.key == node.ie2.key ) {
result = node;
node = null;
¥
else if (
node.ie3 == null
|l ie.key < node.ie3.key )
node = node.cright;
else if (
node.ie3 != null
&& ie.key == node.ie3.key ) {
result = node;
node = null;
¥
else
node = node.right;

}

return result;

Figure 5.10: Another Java implementation of contains with its corresponding control-flow
graph.
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static public Node234 insert( Node234 root, IndexElement ie ) {
if( root.ie3 != null ) {
// save reference to old root
Node234 child = root;
// create new root with old root as leftmost child
root = new Node234();
Node234 z = new Node234();

// collect
IndexElement iell, iel2, iel3;
Node234 leftl, left2, cleftl, cleft2;
iell = child.iel;
iel2 = child.ie2;
iel3 = child.ie3;
leftl = child.left;
cleftl = child.cleft;
left2 = child.cright;
cleft2 = child.right;
// spill

child.ie3 = null;
child.ie2 = null;
child.iel = null;
child.left = null;
child.cleft = null;
child.cright = null;
child.right = null;
root.iel = iel2;
child.iel = iell;
z.iel = iel3;

root.left = child;
root.cleft = z;

child.left = leftl;
child.cleft = cleftl;
z.left = left2;
z.cleft = cleft2;
}
Node234 node = root;
Node234 child = null;
while( node.left != null ) {
// find correct child to insert the index element into
if( node.ie3 != null && node.ie3.key < ie.key)
child = node.right;
else if( node.ie2 != null && node.ie2.key < ie.key )
child = node.cright;
else if( node.iel != null && node.iel.key < ie.key )
child= node.cleft;
else
child = node.left;
// if child is already full, split it first
if( child.ie3 != null ) {
Node234 parent = node;
Node234 z = new Node234();

z.iel = child.ie3;
if( child.left != null ) {
z.left = child.cright;
z.cleft = child.right;
child.cright = null;
child.right = null;
}
// add new child and new index element to parent
if( child == parent.left ) { // node at left was split
parent.right = parent.cright;
parent.cright = null;
parent.cright = parent.cleft;
parent.cleft = null;
parent.cleft = z;
parent.ie3 = parent.ie2; ¥
parent.ie2 = null;
parent.ie2 = parent.iel;
parent.iel = null;
parent.iel = child.ie2;

}
//
no
¥
/] i
Inde
a =
// <
if(
if

}
el

¥
if (
if

}
el

¥

if (
a

¥

/1l s

node

node.
node.
node.
node.
node.

// node at cleft was split

else if( child == parent.cleft ) {
parent.right = parent.cright;
parent.cright = null;
parent.cright = z;
parent.ie3 = parent.ie2;
parent.ie2 = null;
parent.ie2 = child.ie2;

¥

// node at cright was split

else if( child == parent.cleft ) {
parent.right = z;
parent.ie3 = child.ie2;

}

child.ie2 = null;
child.ie3 = null;

// refind correct child to insert into

if( node.ie3 != null && node.ie3.key < ie.key)
child = node.right;

else if( node.ie2 != null && node.ie2.key < ie.key )
child = node.cright;

else if( node.iel != null && node.iel.key < ie.key )
child= node.cleft;

else
child = node.left;

de = child;

nsert into non-full leaf

xElement a,b,c;

node.iel; b = node.ie2; ¢ = node.ie3;
ollect

node.ie2 != null ) {

( node.ie2.key < ie.key ) {

c = ie;

ie = null;

se
c = node.ie2;

node.iel != null && ie !'= null ) {
( node.iel.key < ie.key ) {

b = ie;

ie = null;

se
b = node.iel;

ie '= null ) {

= ie;

pill

.ie3 = null;
ie2 = null;
iel = null;
iel = aj;

ie2 = b;

ie3 = ¢;

return root;

Figure 5.11: An iterative Java implementation of the insert-operation for 2-3-4 trees.
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In this excursus, we describe how shape analysis can cope with integers used to determine the
number of index elements stored at a node. We also give a shape analysis of a simple Java method
which uses integer arithmetic as a proof-of-concept. The key idea is that we want the analysis to
know about the values of integers.

Integer Arithmetic In order to be able to analyze insert implementations for 2-3-4 trees the
analysis must be able to handle integer variables with values in {0,1,2,3,4} as well as increment
and decrement operations on such variables.
The idea to solve this problem is to build a logical structure as depicted in 5.12. We add such a
structure to the heap of the programs we want to analyze. Having each number represented by a
heap cell and modeled the successor function of those numbers by a binary predicate succ(vy, v2)
we can easily model update formulae for increment and decrement operations.

More formally, we allow our analysis to include integer variables as follows. Let values C N

It_zero

Figure 5.12: Logically representing a finite number of integer values.

be a finite intervall (on natural numbers) containing all values of integer variables that we are
interested in. For each number € values we create a unary predicate number(v) as well as a
logical variable vpymper such that number(v) = 1 < v = Vpymper. We also create two summary
nodes representing integer values less than the smallest element of values and values greater than
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5.2 Validation of a 2-3-4 Tree Implementation

the greatest element of values, respectively. Hence, let 1 € values be the smallest element of
our set of integer values and T € wvalues the greatest element. Then we add two predicates
It 1(v)and gt T(v). The binary predicate succ(vi,vs) is used to model the successor function
on numbers. To keep this list of numbers connected, we need a concept of reachability via the
successor function. This is implemented by the predicate r[succ|(vy, v2) which is defined as

(

r[succ](vy, v2) = succ™ (v, v2)

I.e. the non-reflexive transitive closure of succ(vy,vs).

Update formulae for the arithmetical operations are given in Table 5.6. We observe that no
conditional statements need to be modeled. Equality checks between two integer variables is
reduced to an already modeled check whether both variables point to the same heap cell. The
same holds for equality checks between an integer variable and an integer constant c¢. This is
because the latter is translated to the predicate name pred, if this number is modeled, or to gt T
or [t L, respectively, otherwise. Unequality works analogous.

Statement Corr. Java | Update Formula
Statement

inc(x) x=x+1 z(v) =3 u x(u) A succ(u,v).

dec(x) x=x-1 z(v) = Fu z(u) A suce(v,u).

Table 5.6: Update formulee for integer arithmetic.

Example We consider a class Node234 and a method poc( Node234 n ) as shown in Figure 5.13.

public class Node234 {
public int iesStored;

public Node234 poc( Node234 n ) {
n.iesStored = 1;
n.iesStored++;
if( n.iesStored == 2 )
return n;
return null;

}

public Node234 left;

public Node234 cleft;
public Node234 cright;
public Node234 right;

public IndexElement iel;

public IndexElement ie2;

public IndexElement ie3;
¥

(a) Java class modeling nodes of 2-3-4 trees  (b) A method using integer arithmetic

Figure 5.13: A node class and a method using integers.

To show that our approach does work we modified our BTreeTranslator class to translate opera-
tions on integer variables into predicates of our integer domain described in the previous paragraph.
We also let our BTreeTranslator class translate accesses to the integer attribute iesStored of the
node class in the same way as accesses to a reference attribute of that name. We then merged our
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5 Shape Analysis of B-Trees and Variations of B-Trees

predicates and update formulae from the analysis of the contains method with those developed
in this excursus. We exemplarily did a shape analysis on this method using an empty Node234
object as input for the analysis. Figure 5.14 shows the results. As desired, the analysis was able
to show that (a) the iesStored attribute of the node passed to the method is set to 2 and (3) a
reference to the argument is returned at the end of the method invocation.

$parameter0 It_zero It_zero

:S“CC Zero Suce

one return $parameterQ 10

iesStored

(a) Input structure (b) Output structure(s)

Figure 5.14: Input and outputstructures for the proof-of-concept example.

Analysis

The implementation of insert we want to analyze has some static code optimizations. We inlined
the split()-function calls and even removed unreachable code from one of those inlined functions.
We also set reference fields that are to be reassigned explicitly to null in the Java code. As
in previous work, we formulate update formule for statements of the form z.y = z under the
assumption that z.y equals null. Of course it is not necessary to explicitly set reference fields to
null before assigning to. Normally, we would just change the translation of such an assignment to
action macros from

HLBEGIN AssignRefToInstanceFieldRefStmt (%LHS_BASE, %LHS_FIELD, %RHS) J%LEND

to
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5.2 Validation of a 2-3-4 Tree Implementation

%LBEGIN AssignNullToInstanceFieldRefStmt (4LHS_BASE, %LHS_FIELD);
AssignRefToInstanceFieldRefStmt (}LHS_BASE, JLHS_FIELD, %RHS) %LEND

in the used J2TVLA properties file.

The shape analysis must be able to verify property (P1), i.e. that all leaf nodes are on the same
level. We therefore introduce a new binary core predicate level(u,v). The intended meaning
of level(u,v) is that the nodes the logical variables u and v correspond to are on the same level
within the tree structure. Hence, level(u,v) must be modeled reflexive, transitive, and symmetric.
Although level(u,v) is a core predicate, we think of it as defined be the following formula

level(u,v) & u=wvV 3 a,blevel(a,b) A down(a,u) A down(b,v)

We have to ensure that update formulae capture effects of heap-manipulating statements in such
a way that level(u,v) always fits the above definitions.

We can now define an additional instrumentation predicate reflecting (P1) and enabling the anal-
ysis to verify that all leaf nodes reside on the same level within the tree.

pl() =V u,v level(u,v) A =(3 a left(u,a)) = —(3 a left(v,a))
Intuitively, the consistency constraint
treeness() A downStar(u,v) A u # v > —level(u,v)

enables coerce to sharpen structures with respect to the level-predicate.

We want our shape analysis to prove that calling insert(tree, ie) where tree is a reference to a valid
tree structure and ie a valid index element reference returns a valid tree structure which stores ie.
In terms of our predicates, we might formulate the situation at the return-site via the following
formula:

treeness() A inOrder() Apl() A (Y v p2_5(v)) A (3 r,e tree(r) Aie(e) AisElement(e,r))

The implementation of the insert-operation contains assignment statements of the form a.z = b;,
where a, b are references® and = € {left, cleft, cright,right,iel,ie2,ie3}. The implementation
additionally introduces statements of the form Node n = new Node();. To handle such state-
ments, we define the actions given in Table 5.7.

We introduced different actions for assignments to the various reference fields of Node-objects.
This is done because we have to manually update the leftOf-, leftO fStar-, leftSubTree-,
rightO f-, rightO fStar-, and rightSubTree-predicates. To do so, we need a different update
formula for each field. By introducing one action per field, we can attach a specialized update
formula with each such action. If the null-reference is assigned to a field, we do not need to
distinguish the fields and can hence use a single, parameterized action for such assignments. As
only Node-objects are created, it suffices to define one new-action.

5b may be a null-reference.
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5 Shape Analysis of B-Trees and Variations of B-Trees

| Statement | Corresponding Java Statement
new Nodexy = newNode()
AssignRefToleftStmt ri.left = xo
AssignRefTocleftStmt xy.cleft = xqy
AssignRefTocrightStmt xy.cright = 9
AssignRefTorightStmt x1.17ght = x9
AssignRefToielStmt r1.9el = 29
AssignRefToie2Stmt T1.9€2 = X9
AssignRefToie3Stmt T1.9€3 = Ty
AssignNullTolnstanceFieldRefStmt | .29 = null, To €

{left,cleft, cright,right,iel,ie2,ie3}

Table 5.7: Additional actions needed for the implementation of the insert-operation.

Table 5.7 does not give the update-formule of the actions due to their complexness. The new-
action contains update-formulae for all predicates, most of which are trivial. The assignment-
actions update predicates capturing tree properties (treeness, right- and left subtrees, and so on)
which mostly have complex, hard to read update formula. So we limit ourselves to presenting the
most interessting formula only. The complete set of update formulea can be found in Appendix B.
Assigning a Node-object to a left-, cleft-, cright or right-field determines the level in the tree
structure at which this Node-object is located. We define the following update formula to capture
the effects of assignments of the form x1.x2 = x3 on the level-predicate:

level(u,v) =
(z3(u) vV x3(v)) 7
(u=vV3a,b level(a,b) A
(z1(a) V z1(b)) A (down(a,u) V down(a,v) V down(b,u) V down(b,v)))

level(u,v)

Unfortuately, we are not able to actually do this analysis - as described - because the static size
of the insert program is too large for our computer hardware to handle.

Static Size of a Program By Static Size of a Program P we denote the size of the control-
flow graph of P. Let ||y : U — N be a function mapping an object of some universe U to its size,
represented by a dimensionless positive integer value. Furthermore, let G(P) be the control-flow
graph of P, E(G) the edge set of G(P). The static size of P can then be computed as

GP)u=| > lam(e)u | +[V(G)]
e€E(Q)

where am(e) denotes the action macro the edge e is labeled with and |V (G)| the cardinal number
of the vertex set of G(P).
The size of an action is determined by the focus formuls, precondition or update formulse, and
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5.2 Validation of a 2-3-4 Tree Implementation

coerce constraints of the action. Update formulae not given by the user for the respective action
are obtained from differencing and can become extremely large. Also, within all these formulae
instrumentation predicates might be expanded, that is they are (possibly recursively) substituted
by their definitions.

Complex - or simply many - instrumentation predicates, complex action updates, and many pro-
gram statements thus tend to lead to an exploding static size of the program.

To make things even worse, we must take the implementation of the shape analysis framework
into account. TVLA, due to its nice object-oriented implementation style, represents each formula
by an object. This includes representing also the atomic subformula these formula consist of -
down to literals and variables - by objects. Therefore, at the start of the analysis of a program P
a graph structure of |G(P)|y objects has to be built up in memory.

However, switching to an interprocedural implementation of insert overcomes - in this case -
problems with the static program size.

5.2.3 Interprocedural Shape Analyses

The analysis framework we use does already support interprocedural shape analyses [RSY05,
RS01]. The analysis proposed by Rinetzky, Sagiv, and Yahav in [RSY05] computes procedure
summaries as transformers from inputs to outputs. Parts of the heap not relevant to the proce-
dure are ignored in this computation. This leads to an analysis modular in the heap which allows
reusing the effect of a procedure at different call-sites and even between different contexts at the
same call-site [RSYO05].

An interprocedural implementation of the insert-operation - as given in Appendix B - would not
cause any problems due to an overly large static size of the program. Empirical data also suggests
that the cost of analyzing an interprocedural program is smaller than the cost of analyzing the
same program with procedures inlined [RSY05|. Hence, switching to an interprocedural imple-
mentation might allow us to actually do a shape analysis on insert. However, we have to make
sure that all procedure invocations are cutpoint-free as the interprocedural analysis can as yet
only handle cutpoint-free programs. We call an object separating the local heap accessible by an
instance of a procedure from the rest of the program heap a cutpoint. An invocation in which no
such objects exist is called a cutpoint-free invocation.

Time constraints prevented us from following this approach further and actually doing a shape
analysis of an interprocedural implementation of insert. The interprocedural analysis implemented
in TVLA uses a new, although similar, file format: PTS. To generate PTS files from our Java
byte code we have to implement a new Translator class, similar to the BTreeTranslator class we
programmed to adjust J2TVLA’s default translation behavior to our needs. We do not anticipate
any problems with programming a new translator, however, we decided due to the time need to
implement the interprocedural analysis outside the scope of the thesis.

We stated that an interprocedural implementation of insert (as given in Appendix B) does not

generate functions with overly large static sizes. We base this claim on the results we obtained
from doing shape analyses on our intraprocedural implementation with special input structures
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5 Shape Analysis of B-Trees and Variations of B-Trees

(empty tree, tree with only 1 not yet full node and so on) for which we could identify and
remove unreachable parts of the program in order to reduce the static size and make the program
analyzable. By doing so, we could test some of the parts of the program that would constitute
single functions in an interprocedural implementation. Besides reducing the number of program
points we could try to eliminate superfluous predicates or deactivate differencing for update-
formulee by explicitly giving suitable update-formule in order to reduce the static size. However,
we could not identify any predicate as superfluous® and experiments with update-formulee did not
result in any significant decrease in memory consumption.

The following pages present our results for specialized analyses.

Inserting Into Non-Full Leaf Node

We already observed that insert always inserts new elements into leaf nodes that store strictly less
than the maximum number of elements. This part of our intraprocedural implementation can be
easily tested by limiting input structures to 2-3-4 trees consisting of only one node storing at most
2 index elements. We marked the first program points not reachable for such input structures in
the control-flow graph with full and noLeaf, respectively. By verifying that no structures arise
at those points, we can be sure that we have removed only unreachable parts of the control-flow
graph.

At program exit, we would anticipate situations as depicted in Figure 5.15. The first case reflects
an insertion into an empty node. The next two cases reflect the situation that the newly inserted
index element has a key smaller than all elements already stored at the node. As the node was not
already full, there could previously 1 or 2 elements been stored. Cases 4 and 5 show the results
when an element with a key greater than the keys of already stored elements was inserted. Case
6 arises if a smaller and a greater element than the newly inserted one already existed.

1) 4)
2) 5)
3) 6)

Figure 5.15: Possible situations arising after the insertion of an index element into a non-full
leaf node. The grey boxes mark the locations of the newly inserted element.

Running a shape analysis with the input structures given in Figure 5.16 shows that no structures
arise at program points noLeaf and full and generates the output structures presented in Figure
5.17. We observe that the abstract output structure (a) represents case 1, (b) embeds cases 4 and
5, (c) represents case 6, and cases 2 and 3 are represented by (d). We further observe that all

50ne might consider the leftSubTree-predicate superfluous given the rightSubTree-predicate or vice-
versa. However, defining one in terms of the other leads to even larger formule when these intrumen-
tation predicates are expanded.
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invariants (such treeness and properties 1 to 7) hold at the exit point. Please note that not all
predicates are shown in the figures in order to increase readability. For example, p2 5(v) is true
for all heap cells v, although it is not indicated in the graphical representations.

nullary
treeness
inOrder

pl

$parameterl

(a) Empty tree/node

nullary
treeness
inOrder

pl

$parameter]

$parameterQ

downStar

(b) Single, non-full node.

Figure 5.16: Input structures for analyzing insertion into non-full nodes.

nullary

treeness

inOrder
pl

$parameterQ

nullary

treeness

inOrder
pl

Sparameter0

return

$parameterl

return

nullary
treeness
inOrder

S$parameter0  return

$parameterl

nullary
treeness

inOrder $parameterQ

return

$parameter]

Figure 5.17: Output structures computed for the input structures from Figure 5.16.
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Inserting Into a Possibly Full Node

If we allow our input structure to also represent trees with a full root node, we can include the
split-operation into our analysis. Adjusting the input structures, restoring the now reachable parts
of the control-flow, and running the analysis yields the anticipated results. At program point exit
we observe the same 4 structures as previously given in Figure 5.17. At program point noLeaf a
structure as depicted in Figure 5.18 arises which shows that the root node was correctly splitted.

nullary
treeness

inOrder $parameter)

=

aaaaa

isElement kge

$parameter] ke jsElement downStar  isElement  kge fevel el
* downStar «iel LisElement kge level

' downStr ' el | isElement kge

. o0 ’ - isElement. kge
" dowist

fementkgdtevel

Figure 5.18: Structure representing the effects splitting a full root node.

5.2.4 Delete-Operation

The delete-operation has an even larger static size than the insert-operation. We therefore decided
to refrain from any further attemps to analyse this operation and wait until an interprocedural
analysis is available. As stated above, interprocedural analyses for our 2-3-4 tree implemenation
will become available soon.

Our Java implementation of a delete-method for 2-3-4 trees - already implemented interprocedu-
rally - can be found in Appendix B.

5.2.5 Empirical Results

Table 5.8 presents some empirical data obtained from our analyses. The comparison of the data
for the two implementations of contains shows the significant influence of the number of structures
on the analysis time. This may suggest that it is in general a sound strategy to stay as abstract
as long as possible when it comes to designing analyses. FEven if this staying abstract comes
at the price of introducing additional predicates instead of generating more (and more conrete)
structures. Our observations by designing the analyses presented in this work do reinforce this
conjecture.
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Analysis | #locations| #unary| #binary #structures av max time
in CFG predi- | predi- #structs| #structs| sec

cates cates per per (Mac,

location | location | PC)

contains 108 76 18 5336 18 35 168.6,
(1) 79.3

contains 102 76 18 4560 16 42 109.7,
(2) 48.2
poc (inte- | 17 98 21 15 0 1 0.18,
ger arith- 0.07

metics)

insert 106 166 19 278 2 6 4.13,
(partial) 1.84

Table 5.8: Empirical Results

The worst-case complexity of the analysis, however, is in O(n3), where n is the number of ab-
straction predicates.

All analyses were performed on two computers in order to show the influence of main memory and
CPU power on the analysis time. We used an iBook G4 equipped with a 1.42 GHz PowerPC G4
processor and 1 GB RAM running under Mac OS X 10.4.11 and a PC equipped with a Pentium
4 2.6 GHz processor and 2 GB RAM running a Linux kernel in version 2.6.21.1.

5.3 Validation of (general) B-Tree Implementations

In this section, we will have a closer look on which problems arise with the analysis of general
B-trees.

Figure 5.19 shows two classes representing nodes of general B-trees and index elements, respec-
tively. While the index element class is identical to the one used with 2-3-4 trees, the node class
has become more complex. Nodes now have attributes storing the number of index elements
currently stored at the node (iesStored), the order of the tree to which the node belongs (t), and
whether or not the node is a leaf. The latter is indicated by the boolean attribute isLeaf. Pointers
to child nodes and the index elements the node stores are now organized in two arrays. With the
latter two attributes being of an object type it makes sense to add a constructor to initialize the
two arrays.

Incorporating constructors into shape analyses is a solved problem. However, it means that general
B-trees are to be analyzed using an interprocedural shape analysis. In this case, the constructor
is handled like a procedure that is called at the creation of a new node object. Interprocedural
shape analyses were already described in Section 5.2.3.

The boolean attribute isLeaf of node objects is fairly simple to model. We just add an additional
unary instrumentation predicate isLeaf(v) which is true if v represents a node object which has
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public class Node {
public int t;
public boolean isLeaf;

public int iesStored = 0;

public class IndexElement o
public Node[] childs; public int key;
public IndexElement[] elements; public Object content = null;

public Node( int t ) {
this.t = t;
childs = new Node[ 2*t ];
elements = new IndexElement[2*t - 1];

(a) Node class (b) Index element class

Figure 5.19: Java classes representing nodes and index elements, respectively, of general
B-trees.

no child pointers, and false otherwise. The update formula for assignments to boolean variables
just adjusts the value of the predicate accordingly. I.e. the effects on the heap of the statement

n.isLeaf = b, b € {true, false}
can be captured by the following update formula
isLeaf(v) = (v =n)?b:isLeaf(v)

In summary, due to the structures/objects representing general B-trees only two new problems
arise: handling arrays and the values they store as well as handling the order attribute ¢. As
the constructor only initializes empty arrays we may postpone the first problem of considering
contents of arrays until such content becomes crucial to the implementation and hence to the
analysis.

The second problem might be postponed until the analysis of the insert-operation. At that point,
the analysis has to consider integer arithmetics involving the order of the B-tree object. This value
is bounded - which is a prerequisite for our handling of integer values - but not known a-priori.
How to cope with a bounded but unknown value, especially when also dependencies to arrays
exist, remains an open problem at this time.

5.3.1 Contains-Operation

As we already settled for an interprocedural analysis to cope with general B-trees, we choose to
implement the contains operation as a recursive function. Figure 5.20 shows a recursive contains-
method implemented in Java.

The implementation of the contains-operation on general B-trees is - measured by the lines of
code - smaller than the respective operation on 2-3-4 trees. We may therefore conclude that the
static size will not become a problem in the analysis. However, we now reached a point where the
analysis needs to consider arrays. The following subsection describes how a shape analysis can
cope with arrays in general. We also instantiate this general approach to our contains-method.
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public static Node contains( Node n, IndexElement ie ) {

int i = 03

while( i < n.iesStored && ie.key > n.elements[i].key )
i++;

if( i < n.iesStored && ie.key == n.elements[i].key )
return n;

if( n.isLeaf )
return null;
else
return contains( n.childs[i], ie );

Figure 5.20: Recursive Java implementation of the contains operation.

5.3.2 Handling Arrays

Reasoning about values stored in arrays is a problem that has already been addressed. In 1993,
Masdupuy used numeric domains to relate values and index positions of elements stored in stati-
cally initialized arrays [Mas93]. In 2002, Blanchet et al. proposed two approaches to handle values
stored in arrays: array expansion and array smashing [BCCT02]. In the same year, Flanagan and
Quadeer used a predicate abstraction capable of handling arrays of unbounded sizes to infer loop
invariants [FQ02]. Cerny proposed a parametric predicate abstraction to reason about properties
of array elements in 2003 [C03].

In [GDD*04] a systematic approach to designing summarizing abstract numeric domains from
existing numeric domains was described. Summarizing domains represent a potentially unbounded
collection of numeric objects. In 2005, [GRS05]| presented a static-analysis framework to cope with
arrays by combining canonical abstraction (as described in Chapter 3) and summarizing numeric
domains. This framework for numeric analyses of array operations was implemented into TVLA
and successfully used to proof partial correctness of several smaller functions working on arrays,
including an insertion-sort procedure.

We give a short introduction to the techniques proposed in [GRS05] and then investigate how
these techniques can be applied to help in the analysis of B-trees.

Introduction to the Framework for Numeric Analysis of Array Operations

This section briefly summarizes the techniques presented in [GRS05], for a more elaborated intro-
duction, we refer the reader to the original publication.

We denote the sets of scalar and array variables by
Scalar = {v1,...,v,} and Array = {41,..., An},

respectively. AS denotes the set of elements of array A in state S. Let further V denote the set
of possible numeric values. Concrete states are encoded using the following functions:

e ValueS : Scalar — V which maps each scalar variable to its value,

e Size® : Array — N which maps each array variable to its size, i.e. number of cells allocated
for this array,

69



5 Shape Analysis of B-Trees and Variations of B-Trees

. Valuei : A% — V which maps an element of array A to its value,

e and [ ndemf‘ : A% — N which maps an element of array A to its index position within the
array.

Counsidering an array-manipulating language as given in Figure 5.21 we can define concrete collect-
ing semantics by attaching a set of concrete states, D, to each program point. The set transformers
given in Figure 5.22 are used to propagate the sets of concrete states through the program. The
exact sets of concrete states is in general not computable. We therefore use the framework of
abstract interpretation [CC77| to compute at each program point an overapproximation of the set
of states that may arise at this point.

exrpr ii=c¢ stmt ::= v < expr
| v | alv] «— expr
| alv] | if(cond) stmt else stmt
| expr © expr | while(cond) stmt

cond ::= expr X1 expr | stmt; stmt

c€V, v €& Scalar, a € Array
®€{+7_7X}7 M6{<7Sa:727>}

Figure 5.21: Array-manipulating language used by Gopan, Reps, and Sagiv.

We move on to define a family of abstract domains whose elements are sets of abstract memory
configurations. An abstract memory configuration S* is a triple (Pﬁ, OF Aﬁ), in which P! specifies
the array partitioning, Qf the corresponding abstract numeric state, and Af stores the values of
auxiliary predicates. The set of all possible abstract partitions is denoted by f.

We use array partitioning for several purposes. First, we want to isolate array elements used
in the currently considered statement to be able to perform strong updates when assigning to
such elements. Secondly, we try to minimize the precision loss due to summarization by grouping
elements with similar properties together. We achieve this by partition an array such that each
element whose index is equal to the value of any scalar variable is placed in a group by itself and
represented by a non-summary abstract array element. Consecutive array elements in between
the indexed elements are grouped together and represented by summary abstract array elements.
We formally define array partitions by using a fixed set of partitioning functions, II. For an array
A and a scalar v, a function 74, in a concrete state S is of the form

Tap: A% {~1,0,1}
and is evaluated as
—1 if Index% < Value®(v)

TAy = 0 if Index = Value®(v)
1 if Index > Value®(v)
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Notation:

ceV, ve Scalar, A€ Array, Se€X, DCX

@ S {+7_7 X}a DS {<7§7:727>}

elem(S, A,v) = {u € A: Index’(v) = Value® (v)}

Expressions:
[c](S) =¢, [v](S) :SValueS(v)

alue (u) if Ju € elem(S, A, v
[ApI1S) = LA e
[expri © expra](S) = [expri](S) © [expra](S)

Conditions:
[expri < expra](S) = [expri](S) < [expra](S)

Assignments:

[v — expr](S) = S [v — [expr](S)]

o] — eapr(s) = { §1 = [eorr O] fRu e clem(:4,0)
Errors:

[I(L) =1

Set trans]]fg)rlsner?ﬁ 105): 8 ) 4

v «— expr|(D) = {[|v «— expr :5€eD SS1gN s
Ha[v] <—]prr]](D) = {[alv] g empr]]]](S) :Se Dg (Assigna§
cond](D) ={S: S € D and [cond|(S) = true (Cond
DU Dy = D1 U Do (Jom)

Figure 5.22: Concrete collecting semantics for the array-manipulating language as given by
Gopan, Reps, and Sagiv.

We call the set of partitioning functions parameterized with A II4. In a concrete state, we parti-
tion each array A by grouping together elements of A for which all partitioning functions in 114
evaluate to the same value. Each group is represented by an abstract array element. Hence, P?
maps each array to a corresponding set of abstract array elements. These sets are always finite,
although they might be combinatorially large.

The abstract numeric state, Qf, attaches to each partition an element of a summarizing numeric
domain. Quantities of abstract objects are modeled by a dimension in the domain. In array anal-
ysis, non-summary dimensions represent the values of scalar variables, array sizes, and the values
and index positions of non-summarized abstract array elements. Summary dimensions are used
to model values and index positions of summary abstract array elements. Detailed information
regarding the summarizing numeric domains we use here can be found in [GDD*04].

The summarizing numeric domains allow us to reason about numeric properties of summarized

array elements. The set of additional predicates A allows us to capture properties beyond the
capabilities of summarizing numeric domains. In a concrete state S, a predicate in 4 € A maps
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each element of array A to a truth value in {0, 1} indicating whether or not the predicate holds
for this element. Formally, we define:

5A:A5r—>{0,1}

In abstract memory configurations, we simply use abstract predicates, denoted by 5 , correspond-
ing to the concrete predicates d4 and map to a truth value in {0,1,1/2}:

& - PHA) — {0,1,1/2}
In abstract domains, A? stores the interpretation of auxiliary predicates and is defined as:
AF (§4,) = 0% (u)
We conclude this introduction with the definition of abstract states. Let
St = (P}, 01, A7) and 8§ = (P}, 05, AY)

denote two abstract memory locations. We can define a partial-order relation for abstract memory
configurations as follows:

SIC S e Pl =PinQiCOinAlC AL
and a join-operation under the premise that Pf = PQ’i = P! as:
Stush = (P QR Qb AT LAY

An abstract state D¥ is a set of abstract memory configurations with distinct array partitions.
Given two abstract states D%, Dg € 2, we define a partial-order relation on abstract states as:

DiC Dl svste D! 35t e D} SPC SE

The join-operator for abstract states computes the union of the corresponding sets of abstract
memory configurations. Configurations with similar array partitions are joined together.

Applying the Framework to the Analysis of B-Trees

Unfortunately, the framework operates on a fixed, finite set of arrays (and scalar variables). Hence,
it seems not directly applicable to our analysis in which B-trees of unboundedly many nodes are
considered. Such trees imply also unboundedly many arrays - two at each node. However, an
analysis modular in single procedures might only have to consider a fixed number of nodes per
procedure and hence also a fixed number of arrays. We observe that the split-operation needs to
consider three nodes, insert at most two, and insertNonFull - while considering its unboundedly
many child nodes - has to consider only two arrays.

We might instantiate the framework to allow a shape analysis of the contains-operation (as de-
piected in Figure 5.20) as follows. We set

Array = {elements, childs},
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Scalar = {i,ie.key, n.elements.length, n.childs.length,n.iesStored},

and II = {7, clements,is Tn.childsi }- T increase precision, we employ auxiliary predicates
A = {sortedAndUnique(v), keyLessEqual(v)}

with the obvious intended meaning. At the entry point of the contains-method, sorted(v) is true
for all array elements and keyLessEqual(v) is set to 1/2. We now consider the while-loop. In
each iteration, one array element is compared to ie.key. The iteration stops when ie.key is less
than or equal to the array element. Due to our partitioning we have the following situation” after
the while-loop.

Both arrays are partitioned into 3 abstract array elements, each. The analysis can determine
that all elements in the leftmost partition are smaller than ie.key because sorted AndUngqiue(v)
was true for all these elements and each element v was compared to ie.key such that ie.key > v
was satisfied. The middle partition contains a non-summary abstract array element representing
the array value which failed the loop-condition, i.e. which is less or equal to ie.key. Due to the
sortedness of the array, every element in the last, rightmost partition has to be strictly greater
than ie.key. The analysis might set the keyLessFqual-predicate to false for this partition. Figure
5.23 shows the situation graphically.

elementsy | -+ |elements;_1 elements; elements;y1| --- | elementsy,
keyLessEqual=1, sorted=1 keyLessEqual=1 keyLessEqual=0, sorted=1
childsg cee childs;_1 childs; childs;4+1 <o | childsk4

Figure 5.23: Partitioning of arrays during the analysis of contains.

The next two if-statements present no new challenges for an analysis. To handle the else statement
we need auxiliary predicates representing the properties (P1) to (P7) of B-trees. If these predicates
are true we can conclude that the reference returned by the else statement points to the only child
element that can contain an index value with a key equal to ie.key.

5.3.3 Insert- and Delete-Operation

Insert and delete seem to add no new challenges. With 2-3-4 trees insert introduced some com-
plexity issues but this is not the case this time. By partitioning the insert and delete operation
into several procedures we can keep the programs to analyze - and thus their static sizes - small.
Figure 5.24 shows the insert-operation of general B-trees implemented using several functions.

"There are also special cases when the loop stops after 0, 1, n.iesStored — 1 or n.iesStored iterations.
However, those special cases are handled analogously to the general case discussed here.
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public static void split( Node node, int i,
Node ithChild ) {
Node z = new Node( T );

public static Node insert( Node tree, z.isLeaf = ithChild.isLeaf;

IndexElement ie ) { ?.ie§Stored =T-1;
if( tree.iesStored == T * 2 - 1 ) { int 3 ) )
Node n = tree; for( j =05 j <T - 1; j++)

Node s = new Node( T ): z.elements[j] = ithChild.elements[j+T];
= if( !ithChild.isLeaf ) {
for( j = 0; j < T; j++ )
z.childs[j] = ithChild.childs[j+T];

tree s;
s.isLeaf = false;
s.iesStored = 0;

s.childs[0] = n; }
split( s, 1, n ); ithChild.iesStored = T - 1;

insertNonFull( s, ie ); for( j = node.iesStored; j >= i; j-- )
return tree; node.childs[j+1] = node.childs[j];
T node.childs[i] = z;
else { for( j = node.iesStored - 1;
insertNonFull( tree, ie ); j>=i-1;3--)
return tree; node.elements[j+1] = node.elements[j];
3} node.elements[i-1] =
¥ ithChild.elements[T-1];
node.iesStored++;
for( j =T -1; j <2*T-1; j++ )
ithChild.elements[j] = null;

(a) Main insert (b) Splitting full nodes

public static void insertNonFull( Node n, IndexElement ie ) {
int i = n.iesStored - 1;
if( n.isLeaf ) {
while( i >= 0 && ie.key < n.elements[i] .key ) {

n.elements[ i + 1 ] = n.elements[ i ];
i--3
}
n.elements[i+1] = ie;
n.iesStored++;
}
else {
while( i >= 0 && ie.key < n.elements[i].key )
i--3
it+;

if( n.childs[i].iesStored == 24T-1 ) {
split( n, i+1, n.childs[i] );
if( ie.key > n.elements[i].key )
i++;

}
insertNonFull( n.childs[i], ie );

(c) Insert into non-full node

Figure 5.24: Java implementation of the insert-operation on general B-trees.

The usage of arrays and problems resulting thereof is already addressed in 5.3.2. To represent
integer values and model integer arithmetics we rely on the numeric domain introduced with
the handling of arrays. However, we are not sure whether additional auxiliary predicates and/or
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consistency constraints are needed for an analysis. Our experience strongly suggests that such
predicates and constraints are needed.

Considering all suboperations (insertNonFull, split, insert) separately, none of them should in-
troduce new challenges. Although, updating our predicates manually may need some additional
considerations. The main operations on arrays that are performed are insertions into already
sorted arrays. Similar array operations were already analyzed during the shape analysis of an
insert-sort procedure [GRS05].

From the theoretical point of view, we are looking forward to practically do such a shape analysis.
However, it is totally unclear whether such a shape analysis can be done on current hardware
in a reasonable time or if we have to consider a more modular approach to keep the number of
structures during the analysis small enough to handle.
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6 Conclusion

6.1 Contributions

This work presents instantiations of a parametric framework for shape analysis capable of proving
partial correctness of several Java methods implementing operations on 2-3-4 tree. It was also
theoretically established how these analyses might be generalized or adapted to work with general
B-trees. We beliefe that based on the analyses and approaches presented in this thesis it will
not take long until an actual B-tree implementation can be analyzed and its correctness partially
proven be a shape analysis.

B-trees are one of the most popular data structures for data accesses due to their scalability and
efficiency. Due to the particular properties of flash memory storage management algorithms and
data structures that were designed for magnetic discs are not always appropriate for flash discs.
See for example [GT05] for an introduction to the problems with flash memory storage systems
and algorithms and data structures coping with those. Although B-trees are used in nearly all file
systems, Wu et al. showed that B-tree implementations do not have to be modified to cope with
flash memory by introducing a second layer over the flash translation layer (FTL) which provides a
B-tree index management over flash memory storage systems [WCK03a, WKCO07]. A similar layer
has been developed for R trees [IWCKO03b|. Therefore, we do not only feel that this data structure
will keep its popularity but also have high hopes that B-tree implementations and algorithms will
not change because of flash memory. Hence, the analyses and approaches presented in this work
stay valid.

6.2 Future Work

The immediate next step is quite obvious: overcoming the remaining obstacles and actually do a
shape analysis of general B-trees and of the remaining operations on 2-3-4 trees. However, we are
confident that this step can be taken soon and our theoretical considerations on how to adapt the
presented shape analysis of 2-3-4 trees to general B-trees will be put to practice in the near future.

The current framework for shape analysis along with its newer modifications (e.g. the ability to
analyze interprocedural cutpoint-free programs) should be efficient and precise enough to prove
partial correctness of numerous interesting data structures and algorithms. Future work might
address such structures and algorithms.

It also seems that TVLA might need further improvements in order to be able to handle more
than just small methods and programs. The static size of a program tends to become the limiting
factor very rapidly. One of the reasons for a large static program size is the fact that each action
macro is replaced by an unparameterized formula. Alternatively, one could replace action macros
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by references to parametric formulee. This way, each action type would generate one formula-
object. Currently, each action instance generates one formula-object. Hence, at the moment, the
analysis itself is faster but the control-flow graph might be significantly larger. The alternative
implementation would trade a smaller control-flow graph for a slower analysis phase. However,
this problem is already addressed in current work in the course of a Master’s thesis at Tel Aviv
University.

The subsequent sections list the work already planned or worked on following this thesis.

6.2.1 Interprocedural Analyses of insert and delete (on 2-3-4
Trees)

In Section 5.2.3 we sketched how an interprocedural analysis might overcome the identified remain-
ing problems with analyzing insert- and delete-operations on 2-3-4 trees. The main reason we did
not already implement an interprocedural analysis was that we did not want to protract this thesis
by implementing a whole new Translator class able of coping with B-trees to use with J2TVLA
(or rather J2PTS). However, work on such an interprocedural analysis has already started and we
are optimistic to finish a complete shape analysis on 2-3-4 trees soon.

6.2.2 Generality of Predicates

We said in Chapter 5.1 that we intend to generalize the predicates used in the shape analysis of
binary trees described in [Rei05]. By doing so, we allow for a shape analysis of binary trees with
our set of predicates as well. This generality of our predicates, i.e. their ability to successfully
show partial correctness of binary and 2-3-4 trees implementations, still has to be proven.

The remaining obstacle here is the delete-operation on 2-3-4 trees which is still not successfully
analyzed. We cannot exclude the possibility that we need additional instrumentation predicates
and/or consistency constraints. However, the instrumentation predicates used in the analysis of
the contains and insert methods of 2-3-4 trees are already sufficient to redo the shape analysis on
binary trees. We base the latter claim on the fact that all predicates used in anylses of binary
trees have a generalized counterpart among the predicates used with 2-3-4 trees.

However, as soon as the delete method of 2-3-4 trees is successfully analyzed, we strongly plan to
show the generality of our predicates by using them to perform a shape analysis on both kinds of
trees.

It might also be worth investigating whether it is possible to analyze also other tree structures
with this generalized set of predicates. Or whether it is possible to generalize the predicates even
further to cope with a larger set of different kinds of tree structures.
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A Proofs

A.1 Equivalence of Treeness Definitions

Claim 2 Qur instrumentation predicate treeness() gives a definition of treeness equivalent to the
following definition:
A (directed) connected graph T = (V, E) (with a unique root-node) is called a tree if and only if
between any two vertices u,v € V' there exists a unique path (by ignoring directions of edges if T
is a directed graph).

Proof:
We need to show that

V v, v2,v3 leftO fStar(vy, v2) = —(downStar(vi,vs) A downStar(va,vs))
=

V u, v there exists a unique path from u to v

= (contraposition)
3 vy, va, v3 leftO fStar(vi,ve) A (downStar(vi,vs) A downStar(ve, vs))

= 3 u, v there is more than 1 path from u to v

We first choose nodes u, vy, v2 such that down(u,v1) A down(u,vs) AleftO fStar(vi,ve) holds.
We assumed there is a v3 such that downStar(vy, vs) AdownStar(ve, vs) holds. We can choose

this v3 as v, observe that there exist two paths from u to v, and conclude that this implication
holds.
We still have to show the other direction:

= (contraposition)
d w, v there is more than 1 path from u to v
= J vy, vg,v3 leftO fStar(vy,va) A (downStar(vy,vs) A downStar(ve, vs)
There are (at least) two paths from u to v (assumption). We call those paths p; and po. Let
vy be the first node traversed on p; and vg the first on po. W.lo.g. let leftO fStar(vy,v2) be

true (otherwise we can rename v; to ve and vy to vy, respectively). This construction implies
that downStar(vy,v) A downStar(ve,v) holds. This completes our proof. |

A.2 Formal Proofs for Consistency Constraints

In this section, we give formal proofs that all consistency constraints we used during the analysis
are implied by the instrumentation and core predicates.

Let R = ¢1>p2 be a consistency rule and Z = {p = pp|¢1 or ¢z contains p} be the set containing
all definitions of instrumentation predicates used in R. In order to safely use R we need to show
that the implication

Apr=vp| = (01 = ¢2)
peL

does always hold.
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down \down

—treeness() implies that there exists

u, v s.t. there are more than 1 paths ° °

from u to v. , .
‘downStar downStar

=
CeD

. down \down
there exists u, v s.t. there are more

than 1 paths from u to v implies that ° °
our definition of treeness does not : ‘

hold :»downStar -downStar

9

Figure A.1: Proof sketch.

A.2.1 Consistency Constraints Used in the Analysis of contains

Claim 3 We can use the consistency rule R

R = isStore(v) A storeProp(v) > —down(v, u)

based on
[ storeProp(v) = 3 u (isStore(v) A down(v,u)) = 0,
| isStore(v) = 3 v iel(v',v) Vie2(v',v) Vied(v',v)
Proof:
We assume
isStore(v) A storeProp(v) = =3 u down(v, u)
to hold.

isStore(v) A storeProp(v) = =3 u down(v,u)
isStore(v) A ((3 uw isStore(v) A down(v,u)) = 0) = (3 u down(v, u))
isStore(v) A (misStore(v) V =(3 u down(v,u))) = —(3 u down(v,u))
isStore(v) A =(3 u down(v,u)) = —(3 u down(v,u))
—isStore(v) V (3 u down(v,u)) V ~(3 u down(v,u))
—isStore(v) V 1
1

K A
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Claim 4 The consistency constraint
—downStar(u,v) > —~down(u,v)
can be used.

Proof:

Let down(u,v) be a given predicate and downStar(u,v) the reflexive transitive closure of that
down predicate.
The reflexive transitive closure brel* of a binary relation (or in our case predicate) brel is in
logical terms defined as

brel*(u,v) & u = vV brel™ (u,v)

where brel™ (u, v) is defined as
brel™ (u,v) < brel(u,v) V3 n > 13 wi,...,w, brel(u,wy) Abrel(wy,w2) A ... Abrel(w,,v)
Using those definitions, we can easily show our claim:

—downStar(u,v) = ~down(u,v)
= (u =0V down™t(u,v)) = ~down(u,v)

u # v A ~down™ (u,v) = ~down(u,v)
=down(u,v) Vu=vVdown™(u,v)
~down(u,v) V down(u,v) V down”1 (u,v) Vu=wv
1Vu=uvVdown”(u,v)

1

toe T

where

down”Y(u,v) = In>13w,...,w,

down(u,wi) A

/\ down(w;, wi+1)

1<i<n—1
A down(wy, v)

Claim 5 The consistency constraint
(treeness() A (3 a down(a,b) A a # ¢)) > —~down(c,b)
is implied by the set of instrumentation and core predicates.

Proof:
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“downStar ‘downStar

down /down

Figure A.2: A contradictory structure.

According to our definition of treeness() and our construction of tree structures which guar-
antees a unique root node, we can conclude that if ¢reeness() holds the following formula
evaluates to true:

vV d, b, down(a', ') Adown(d, V) = ad =

We can easily convince ourselves that this formula must indeed hold. Suppose it does not
hold. Then
3d, b, down(a', V') A down(d V') Nd # ¢

But in this case we have a situation as depicted in Figure A.2 in which there are two paths
from the root node to ' (a’ and b’ cannot both be root nodes). This contradicts the fact that
the structure is a directed tree.

It remains to show that

V b,c (treeness() A (3 a down(a,b) A a # ¢) = —~down(c,b))
does always hold. We rewrite this as

V b,c ((3 a treeness() A down(a,b) A a # ¢) = ~down(c, b))
& Va,b,c (mtreeness() V ~down(a,b) V a = ¢V ~down(c,b))

We can replace treeness by the formula introduced above which we can assume to hold for any
triple o/, b/, ¢. Hence, it holds in particular for a, b, and c. Thus:

YV a,b,c  —(down(a,b) A down(c,b) = a = c) V ~down(a,b) V a = cV ~down(c,b)
< Va,bc —(—down(a,b)V -down(c,b)Va=c)V (~down(a,b)Va=cV -down(c,b))
& VYa,b e 1

Claim 6 We can safely use a consistency constraint

—down(u,v) > -sel(u,v)

for all sel € Sel.
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Proof:

The down-predicate was defined as

down(u,v) = \/ sel(u,v)
seleSel
Using this definition we can easily verify the claim:
~down(u,v) = —sel(u,v) (sel € Sel)

S \/ sel'(u,v) = —sel(u,v) (sel € Sel)
sel’eSel

& \/ sel’ (u,v) V =sel(u,v)  (sel € Sel)
sel’€Sel

& 1v \/ sel’(u, v) (sel € Sel)
sel’eSel\{sel}
& 1

Claim 7 Our definition of treeness implies the following two consistency constraints:
3 u treeness() A rightSubTree(u,v) A leftSubTree(u,w) > ~downStar(v, w)
3 u treeness() A rightSubT'ree(u,v) A leftSubTree(u,w) > ~downStar(w, v)

Proof:

We limit ourselves to showing the first implication. The second constraint can be shown
analogous.

YV v,w (3 u treeness() A rightSubTree(u,v) A le ftSubTree(u,w)) = —downStar(v, w)
< Y u,v,w —(treeness() A rightSubTree(u,v) AleftSubTree(u,w)) V ~downStar(v, w)

Instead of showing that the last formula is true, we show that its negation
Ju,v,w (treeness() A rightSubTree(u,v) A leftSubTree(u,w)) A downStar(v,w)

is false. We settle for a proof by contradiction. Suppose such u, v, w do exist. We would end
up with a structure as depicted in Figure A.3. However, we already showed that our definition
of treeness is equivalent to saying between any two nodes exists a unique path. Clearly, the
depicted structure shows two paths from the parent node of u to w. We therefore conclude
that

YV u,v,w —(treeness() A rightSubTree(u,v) A le ftSubTree(u,w)) V ~downStar(v, w)

must hold.
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treeness() A rightSubTree(u,v)A

leftSubTree(u, w) AdownStar(v, w)

Formula

L ‘ own "downStar
- downStar @
o "downStar

Graphical representation

Claim 8 The following consistency constraints are implied by the instrumentation predicates.

Proof:

The proofs work similar for all those constraints.

Figure A.3: A contradictory structure.

3w leftSubTree(u,v) Aiel(w,u)

3 u leftSubTree(u,v) Aiel(w,u)
3 u leftSubTree(u,v) Aiel(w,u)
3 u leftSubTree(u,v) Adel(w,u)
3 u leftSubTree(u,v) Aiel(w,u)
3 u leftSubTree(u,v) Aie2(w,u)
3 u leftSubTree(u,v) Aie2(w,u)
3 u leftSubTree(u,v) Aie2(w,u)
3 u leftSubTree(u,v) Aie3(w,u)
3w rightSubTree(u,v) A iel(w,u)
3 u rightSubTree(u,v) A ie2(w, u)
3 u rightSubTree(u,v) A ie2(w,u)
3 u rightSubTree(u,v) A ie2(w,u)
3 u rightSubTree(u,v) A ie3(w,u)
3 u rightSubTree(u,v) A ie3(w, u)
3 u rightSubTree(u,v) A ie3(w, u)
3 u rightSubTree(u,v) A ie3(w, u)
3 u rightSubTree(u,v) A ie3(w, u)

> —cleft(w,v)
> —eright(w,v)
> —right(w,v)
> —ie2(w,v)

> —ied(w,v)

> —eright(w,v)
> —right(w,v)
> —ied(w,v)

> —right(w,v)
> —left(w,v)

> —left(w,v)

> —cleft(w,v)
> —iel(w,v)

> —left(w,v)

> —cleft(w,v)
> —eright(w,v)
> —iel(w,v)

>

—ie2(w,v)

Therefore, we exemplarily show the first

consistency constraint. For the first constraint to be valid, we need to show that the following
implication does always hold:

Vou,w (3 uleftSubTree(u,v) Aiel(w,u)) = —cleft(w,v)

95



A Proofs

We argue that we can replace leftSubTree(u,v) by rightO fStar(u,v) because these are the
only v reachable via one selector. Only for these can cleft(w,v) potentially be true. Substi-
tuting and eliminating the implication symbol in the formula yields

Y u,v,w —rightO fStar(u,v) V miel(w,u) V —cle ft(w, v)
We show this by proving that
3 u,v,w rightO f Star(u,v) Aiel(w,u) A cleft(w,v)

cannot be satisfied. Assume that iel(w,u) A cleft(w,v) holds, otherwise we do not have to
show anything further. But if iel(w, u) A cleft(w,v) is true rightO f Star(u,v) must be false,
considering the definition of rightO f Star(u,v). |

Claim 9 The p2_5-predicate implies the following consistency constraints:
1. Y vr Awleft(vi,v) Ap2_5w)> A vy cleft(vi,ve)
2. Y v Awvceft(v,v) Ap2_5(v)> A vy left(vy,va)
3. Vv Awviel(vy,v

Ap2_5(v)> A vg ie2(vy,v2)

Vo Awvie2(vy,v) Ap2_5(v)> A vy ie3(v,ve)
Vo Awvie2(vy,v) Ap2_5(v)> A vy cright(vy,va)

Vo Awvied(vy,v) Ap2_ 5(v)> A vy right(vy,ve)

S S N

(
) 5(v)
) (v)
Vo Awiel(vi,v) Ap2_5(v)> A vy left(vi,ve)
) (v)
v) (v)
(v

Vo Awvcdeft(v,v) Ap2_5(v)> A vy cright(vy,va)

9. Vv Awv cright(vi,v) Ap2_5(v)> A ve right(vi, va)
10. ¥ v1 =(3 u right(vi,u)) A (3 v cright(vi,v)) Ap2_5(v)> A ve ie3(vy, v2)
Proof:

From the definition of p2 5(v) we can conclude that p2 5(v) holds if and only if each of the
following expressions is true:
Juleft(v,u)) < (3 u cleft(v,u’)
Ju cright(v,u)) = (3 o' ceft(v,u))
Ju cright(v,u)) = (3 v’ ie2(v,u’))
Ju right(v,u)) = (3« cright(v,u))
u)) =

i (
(
(
(
(3 w right(v, (3 ie3(v,u))
(
(
(

i

—-

i

—

i

v

<

vi (Fuie2(v,u)) = (3o iel(v,u’))
Fuie3(v,u)) = (3 u ie2(v,u’))
)

Juleft(v,u)) = (3 u iel(v,u’))

vii

viii
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ix (3 u,wie3(v,u) A cright(v,w)) = (3 u’ right(v,u’))
In order to show that (1) is implied, we have to show that
Vo Awleft(vi,v) Ap2_5(v1) = A va cleft(vi,va)

always holds. Substituting p2_5(v1) by (3 u cleft(vi,u)) = (3 o’ left(vi,u')) (which holds
because (i) does hold) yields:

Vo (3w left(v,v)) A(=(3uceft(vi,u)) VvV (3 u left(vi,u))) = —(3 ve cleft(vi, va))

Vo (Foleft(vr,v)) V(3 uceft(vy,u)) A=(3 u left(v,u))) V—(3 vy cleft(vi,vs))

vV vy (F o left(vy,v)) V(3 u left(vy,u)) V(3 vy ceft(vi,va)) &V vy 1

We can show (2) in a similar way by substituting p2_5(v1) by (3’ left(vi,v')) = (u cleft(vy,u)).
The remaining consistency constraints can be easily shown by substituting p2 5(v;) by the

expression whose selector predicates matches those of the constraint. That is, in order to show
(3) we use (ii), to show (4) we use (iii), and so on. |

Claim 10 The inOrder()-predicate implies

inOrder() A rightSubTree(u,v) > kge(v,u)

inOrder() A rightSubTree(u,v) > —kge(u,v)
inOrder() AleftSubTree(u,v) > kge(u,v)
inOrder() AleftSubTree(u,v) > —kge(v,u)

Proof:

Again, we will just show the first implied constraint. The remaining three are shown analo-
gously.
inOrder() A rightSubTree(u,v) = kge(v,u)

We substitute inOrder() by rightSubTree(u,v) = kge(v,u) A —kge(u,v) which, by definition
of inOrder(), holds if inOrder() holds

(rightSubTree(u,v) = kge(v,u) A —kge(u,v)) A rightSubTree(u,v) = kge(v, u)
—(—rightSubTree(u,v) V (kge(v,u) A —kge(u,v))) V —rightSubTree(u,v) V kge(v, u)

rightSubTree(u,v) A (mkge(v,u) V kge(u,v)) V —right SubTree(u,v) V kge(v, u)

1A (mkge(v,u) V kge(u,v) V —rightSubTree(u,v)) V kge(v, u)
—kge(v,u) V kge(u,v) V —rightSubTree(u,v) V kge(v, u)
1

te e

Claim 11 The consistency constraint
inOrder() A (3 b kge(a,b) A kge(b,c) Na#bAa#cNb#c)>—kge(c,a)

follows from our definition of inOrder().
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Proof:

It suffices to show that the inOrder-predicate guarantees that the keys stored in a tree are
unique. This is quite obvious. Let u and v be two arbitrary heap cells storing a value. We
can always find heap cells p such that downStar(p,u) A downStar(p,v) A —=(downStar(p’,u) A
downStar(p',v)) for all child nodes p’ of p holds. This p is root for at least two subtrees where
one contains u and the other v. inOrder() implies that keys from different subtrees cannot
contain equal keys. Hence, the arbitrarily chosen nodes u and v must store different keys. W

Claim 12 The greRelation-predicate implies
YV u,v greRelation() A —kge(u,v) > kge(v,u)

Proof:

Replacing gerRelation() with its defining formula in the implication we want to show yields:

Vu,v (—kge(u,v) = kge(v,u)) A —kge(u,v) = kge(v, u)
e VYu,v  (kge(u,v) V kge(v,u)) A —kge(u,v) = kge(v,u)
e VYu,v  —(kge(u,v) Vkge(v,u)) V (kge(u,v) V kge(v,u))
S Vu,v 1

Claim 13 The following two consistency constraints are implied by our definitions of the le ft SubTree-
and rightSubTree-predicates.

YV u,w ((3 p —rightSubTree(u, w) A downStar(p, w)A
down(p,u) A ~downStar(u,w)
AN #uNw#pAuFp) > leftSubTree(u,w))
YV u,w ((3 p ~leftSubTree(u, w) A downStar(p, w)A
down(p,u) A ~downStar(u,w)
AN #uANw#pAu#p) > rightSubTree(u,w))

Proof:

As both proofs work analogously we again limit ourselves to showing just the first one. We
assume that the implication

YV u,w ((3 p —rightSubTree(u, w) A downStar(p, w)A
down(p,u) A ~downStar(u,w)
AN #uhNw#pAuFp) = leftSubTree(u,w))

would not hold. Le. there may exist a triple (u,w, p) of pairwise different heap cells such that

—rightSubTree(u,w) A downStar(p, w) A down(p,u) A ~downStar(u,w)
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N=leftSubTree(u, w)

holds.

This, however, leads to a contradiction. The heap cell w is reachable from heap cell p because
of the satisfied downStar(p,w) predicate. wu is directly reachable from p. Every other cells
directly reachable from p are either left of u or right of u. As neither leftSubTree(u,w) nor
rightSubTree(u,w) holds per assumption, we conclude that w must be rooted at u other-
wise it cannot be reachable from p. But this also cannot be because —downStar(u,w) does
hold. Hence, our assumption leads to a contradiction and the implication for our consistency
constraint must hold. |

A.2.2 Consistency Constraints Used in the Analysis of insert

Claim 14 The consistency constraint
treeness() A downStar(u,v) A u # v > —level(u,v)
is implied by the definition of level and downStar.
Proof:

We need show that the implication
treeness()A(u = vVdown™ (u,v))Au # v = = (u = vV 3 a,b level(a, b) A down(a,u) A down(b,v))
does always hold. Some simplifications yield:
Y a,b,u,v =(down™ (u,v)) Vu=uvV -level(a,b) V ~down(a,u) V ~down(b,v) V —treeness()

We proof that this formula is always satisfied by showing that its negation leads to a contra-
diction. Hence, suppose such a, b, u, and v satisfying

(down™ (u,v)) Au# v Alevel(a,b) A down(a,u) A down(b,v) A treeness()

would exist. Then u is reachable from a, v from b, v also from uw and a and b both from the
root node. Now, we have two paths to reach v from the root node, one over a and u - as u and
v are different nodes - and one directly over b. Note, that a and b might be the same node, due
to one path going over u, we still have found two paths to reach v. This, however, contradicts
the treeness of the structure. And thus, we may conclude that the implication must hold. W
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B Source Code

B.1 TVLA Input Files

B.1.1 Predicate Files

Predicate File for Contains

/* Variables we don’t want to have shown in the output, most of these were
* introduced by the Java compiler.
*/
%s PVarInvisible {$r3, $r4, $r5, $r6, $r7, $r8, $r9, $r10, $ri1, $r12, $ri3,
$io0, $i1, $i2, $i3, $i4, $i5, $ie6, $i7, $i8, $i9, $i10, $i11, $il12, $ii3,
$return}

// The program variables we are interested in
%s PVarVisible {$parameter(Q, $parameterl, return, ril, r2, r0}

// selector predicates (child pointers and pointers to stored values)
%s TSelEl {left, cleft, cright, right, iel, ie2, ie3}

/KA R R oK R o K o ok ook oK oK K oK o o K o ok o oK K oK o ok K o sk o K KK K ok R o ok o ok oK K o K ok K o ok o sk KoK K ok K o ok o sk K Kok K o ok o ok ok Kok ok /
/*** core predicates *% % /
/KKK R o R o K ok ok oK ok R o ok ok ok ook ook K R ok K ook ok KK o ok R ok ko ok sk Rk R ok K ok ok Kk K sk oK ok ok ok sk sk Kok K ok Kk ok ok /

foreach ( z in PVarInvisible ) {
%p z(vl) unique pointer abs {}
}

foreach ( z in PVarVisible ) {
%p z(vl) unique pointer abs

}

foreach (sel in TSelEl) {
%p sel(vl, v2) function
}

// key(s) greater equal
%p kge(vl, v2) reflexive transitive {}

%p heapcell(v) nonabs {}

/R ko ko o sk o sk o ok o o ok sk o ok o K o R ok Rk o ok o o sk o ok o ok ok R ok o sk o ok o ok ok ok o sk o K o o sk ok sk o ok ok K ok sk o sk o ok ok ok ok ook /
/*** instrumentation predicates *k % /
/K koK ok ok ok o sk o sk ok ok ok K ok o sk o ok ok K ok ok ok ok K ok K ok o sk o ko ok ok o ok o sk o Kok o ok o ok ook ok K ok o sk o sk o ok ok K ok sk o sk ok ok ok ok ok ok ok /
// The down predicate represents the union of selector predicates.

%i down(vi, v2) = |/{ sel(vl, v2) : sel in TSelEl } {}

// The downStar predicate records reflexive transitive reachability

// between tree nodes along the union of the selector fields.
%1 downStar(vl, v2) = down*(vl, v2) transitive reflexive antisymmetric
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// For every program variable z the predicate r[z] holds for individual
// v when v is reachable from variable z along the selector/store fields.
foreach (x in PVarVisible - {r0}) {
%i rlx](v) = E(vl) (x(vl1) & downStar(vl, v)) nonabs {}
}
foreach (x in PVarInvisible) {
%i r[x](v) = E(vl) (x(vl) & downStar(vi, v)) nonabs {}
}
// reachability from rO
%i rlrol(v) = E(vl) (rO(vl) & downStar(vl, v)) abs

%i isStore(v) = E(vl) (iel(vil, v) | ie2(vl, v) | ie3(vl, v)) nonabs
//%i storeProp(v) = isStore(v) -> !(E(vl)down(v, v1)) nonabs {}

%1 storeProp(v) = (isStore(v) & E(v1l) (down(v, v1))) -> O nonabs {}
111117171177

%1 leftO0f(u,v) = ( E(w) (Qleft(w,u) & iel(w,v)) )

( E(w) (iet(w,u) & cleft(w,v)) )
( E(w) (cleft(w,u) & ie2(w,v)) )
( E(w) (ie2(w,u) & cright(w,v)) )
( E(w) (cright(w,u) & ie3(w,v)) )

( E(w) (ie3(w,u) & right(w,v)) )

( E(w) (dei(w,u) & ie2(w,v)) & !'E(1) left(w,1l) )

( E(w) (ie2(w,u) & ie3(w,v)) & 'E(1) left(w,1l) )
{3

%i left0fStar(u,v) = left0f+(u,v) transitive {}
%1 rightSubTree(u,v) = E(w) (left0fStar(u,w) & downStar(w,v)) {}

//
%i rightOf (u,v) = ( E(w) (right(w,u) & ie3(w,v)) )

( Ew) (ie3(w,u) & cright(w,v)) )
I( E(w) (cright(w,u) & ie2(w,v)) )
I( E(w) (ie2(w,u) & cleft(w,v)) )
I( E(w) (cleft(w,u) & iel(w,v)) )
I( E(w) (iel(w,u) & left(w,v)) )

|
( E(w) (ie2(w,u) & iel(w,v)) & 'E(1) left(w,1l) )
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|
( E(w) (ie3(w,u) & ie2(w,v)) & !'E(1) left(w,1l) )
{3
%1 rightOfStar(u,v) = right0f+(u,v) transitive {}
%i leftSubTree(u,v) = E(w) (rightOfStar(u,w) & downStar(w,v)) {}
//
%i treeness() =
(A(v1,v2,v3)left0fStar(vl,v2) -> !(downStar(vl,v3) & downStar(v2,v3)))
%i inOrder () = (A(v,u) (leftSubTree(u,v) -> kge(u,v) & !kge(v,u)))
&
(A(v,u) (rightSubTree(u,v) -> kge(v,u) & 'kge(u,v)))
%1 kgel[$parameterl, left](v) = E(u) $parameteri(u) & kge(v,u) & !kge(u,v) abs
%i kgel[$parameterl, right](v) = E(u) $parameteri(u) & 'kge(v,u) & kge(u,v) abs
//
%1 isElement(u,v) = E(w) (downStar(v,w) & kge(w,u) & kge(u,w) & /*v!=w &*/ isStore(w))
//
%1 p2_5(v) = ((E(u) left(v,u)) <-> (E(ul) cleft(v,ul))) // min 2 child nodes
&
((E(u) cright(v,u)) -> (E(ul) cleft(v,ul)))
&
((E(u) cright(v,u)) -> (E(ul) ie2(v,ul)))
&
((E(uw) right(v,u)) -> (E(ul) cright(v,ul)))
&
((E(u) right(v,u)) -> (E(ul) ie3(v,ul)))
&
((E(u) ie2(v,u) -> (E(ul) iei(v,ul))))
&
((E(n) ie3(v,u) -> (E(ul) ie2(v,ul))))
&
((E(u) left(v,u) -> (E(ul) iel(v,ul))))
&
((E(u,w) ie3(v,u) & cright(v,w)) -> (E(ul) right(v,ul)))
nonabs {}
%1 greRelation() = A(u,v) 'kge(u,v) -> kge(v,u)

/******************************************************************************/

/*** consistency rules *okk /
//srstkok ok ks ok sk s ok sk o s ok sk s kst sk ok sk sk ke ok sk sk ok sk s ok ks s ok sk s ok sk s ok sk sk o ok sk sk ok sk skok /

//

follows from storeProp

%r isStore(v) & heapcell(u) & storeProp(v) ==> !down(v,u)

//

follows from down/downStar

%r 'downStar(u,v) ==> 'down(u,v)
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// follows from treeness and down
%r treeness() & E(u) (down(u,vl) & u != v2) ==> !down(v2,vl)

foreach (sel in TSelEl) {

}

//

%r 'down(vl,v2) ==> !sel(vl,v2)

follows from treeness

foreach (s1 in TSelEl) {
foreach (s2 in TSelEl - {si1}) {
%r treeness() & si1(vi,v2) ==> !'s2(v1,v2)

VA
VA

//
%r
%r
%r
%r
%r

VA
VA
VA

%r

VA

VA
%r
%r

%r
%r
%r
%r
%r

//
%
%r

VA

VA

%r
VA

}

E(uw) (treeness() & rightSubTree(u,v) &
E(u) (treeness() & rightSubTree(u,v) &

E(u) (1eftSubTree(u,v)
E(u) (leftSubTree(u,v)
E(u) (leftSubTree(u,v)
E(u) (leftSubTree(u,v)
E(u) (1eftSubTree(u,v)

E(u) (1eftSubTree(u,v)
E(u) (leftSubTree(u,v)
E(u) (leftSubTree(u,v)

E(u) (1eftSubTree(u,v)
E(uw) (rightSubTree(u,v)

E(uw) (rightSubTree(u,v)
E(u) (rightSubTree (u,v)
E(u) (rightSubTree (u,v)

E(uw) (rightSubTree(u,v)
E(uw) (rightSubTree(u,v)
E(u) (rightSubTree (u,v)
E(u) (rightSubTree (u,v)
E(u) (rightSubTree (u,v)

Freeee

&

&

&

IR

iel(w,u))
iel(w,u))
iel(w,u))
iel(w,u))

iel(w,un)) =

ie2(w,u))
ie2(w,u))
ie2(w,u))

ie3(w,u))
iel(w,u))

ie2(w,u))
ie2(w,u))
ie2(w,u))

ie3(w,u))
ie3(w,u))
ie3(w,u))
ie3(w,u))
ie3(w,u))

==>

==>

==>
==>
==>

==>
==>
==>

leftSubTree(u,w)) ==> !downStar(v,w)
leftSubTree(u,w)) ==> !downStar(w,v)

tcleft(w,v)
tcright (w,v)
'right (w,v)
tie2(w,v)
tie3(w,Vv)

‘cright (w,v)
'right (w,v)
tie3(w,v)

'right (w,v)
eft(w,v)

left(w,v)
tcleft (w,v)
tiel(w,v)

eft(w,v)
tcleft (w,v)
Ycright (w,v)
tiel(w,v)
tie2(w,v)

'(E(v) left(vl, v)) & heapcell(w) & p2_5(v1) ==> !cleft(vl,v2)
'(E(v) cleft(vl, v)) & heapcell(w) & p2_5(vl) ==> !left(vl,v2)

'(E(v) iel(vl, v)) & heapcell(v2) & p2_5(vl) ==> !ie2(vl, v2)
'(E(v) ie2(vl, v)) & heapcell(v2) & p2_5(vl) ==> !ie3(vl, v2)

'(E(v) iel(vl, v)) & heapcell(v2) & p2_5(vl) ==> !left(vl,v2)
'(E(v) ie2(vl, v)) & heapcell(v2) & p2_5(vl) ==> !cright(vi,v2)
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%r '(E(v) ie3(vl, v)) & heapcell(v2) & p2_5(vl) ==> !right(vl,v2)

%r ' (E(v) cleft(vl, v)) & heapcell(v2) & p2_5(vl) ==> l!cright(vl, v2)
%r '(E(v) cright(vl, v)) & heapcell(v2) & p2_5(vl) ==> !right(vl, v2)

%r '(E(uw)right(vl,u))&(E(v)cright(vl, v)) & heapcell(v2) & p2_5(vl) ==> !ie3(v1,v2)

//

%r inOrder() & rightSubTree(u,v) ==> kge(v,u)

%r inOrder() & rightSubTree(u,v) ==> 'kge(u,v)

%r inOrder () & leftSubTree(u,v) ==> kge(u,v)

%r inOrder () & leftSubTree(u,v) ==> !kge(v,u)

//

//

%r inOrder() & E(b) (kge(a,b) & kge(b,c) & a !=b & a != c & b != c) ==> lkge(c,a)
//

%r greRelation() & 'kge(u,v) ==> kge(v,u)

%r E(p) ('rightSubTree(u,w) & downStar(p,w) & down(p,u) & !downStar(u,w)
&w'!=u&w!=p&u!=p) ==>leftSubTree(u,w)

%r E(p) ('leftSubTree(u,w) & downStar(p,w) & down(p,u) & !downStar(u,w)
Ew'!=u&w!=p&u!=p) ==> rightSubTree(u,w)

Predicate File for Insert (Partial)
This file can be found on the enclosed CD-ROM.

B.1.2 Action Files

Action File for Contains

%action Skip() {
%t "Skip"
}

%action AssignRefToRef (x1, x2) {
%t x1 + "=" + x2
»E { x2(v) }
{
x1(v) = x2(v)
rx1] (v) = r[x2](v)

}

}

%action AssignFieldRefToRef(x1, x2, x3) {
htoxl + M ="+ x2 + "M+ x3
Wt A

x2(v_1) & x3(v_1, v),
x2(v_1) & x3(v_1, v_2) & downStar(v_2, v)

~—
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x1(v) = E(v_1) x2(v_1) & x3(v_1, v)
rlx1](v) = E(v_1,v_2) x2(v_1) & x3(v_1, v_2) & downStar(v_2, v)

}
}
Y%action SetNull(x1l) {
%t x1 + " = null"
{
x1(v) =0
r[x1](v) =0
}
}

%action IsNullVar(xil) {
%t x1 + " == null"
%t { x1(v) }
wp '(EW) x1(v))

}

%action IsNotNullVar(x1l) {
%t x1 + " '= null"
W A{ x1(v) }
wp (E(v) x1(v))

}

%action IsEqualRef(x1, x2) {
Yt x1 + " == "+ x2
ht { x1(v), x2(v) }
%p A(v) x1(v) <-> x2(v)

}

%action IsNotEqualRef(x1l, x2) {
Yo x1 + " 1= " 4+ x2
ht { x1(v), x2(v) }
%p 'A(v) x1(v) <-> x2(v)

}

%action GreaterEqualKey(x1l, x2) {
%t x1 + "->key >= " + x2 + "->key"
Wt A
x1(v_1) & x2(v_2) & kge(v_1, v_2),
x2(u) & rightSubTree(u,v),
x2(u) & leftSubTree(u,v)
}
%p E(v_1l, v_2) x1(v_1) & x2(v_2) & kge(v_1, v_2)
Ymessage ('(E(v) x2(v)) | '(E(v) x1(v))) -> "null pointer exception\n"
}

%action NotGreaterEqualKey(x1l, x2) {
%t x1 + "->key < " + x2 + "->key"
Wt A
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x1(v_1) & x2(v_2) & 'kge(v_1, v_2),
x2(u) & rightSubTree(u,v),
x2(u) & leftSubTree(u,v)
}
%p E(v_1, v_2) x1(v_1) & x2(v_2) & 'kge(v_1, v_2)
%message (' (E(v) x2(v)) | '(E(v) x1(v))) -> "null pointer exception\n"
}

%action EqualKey(xl, x2) {
%t oxl + " o1= "+ x2
W { x1(v_1) & x2(v_2) & kge(v_1, v_2) & kge(v_2, v_1) }
%p ( E(v_l, v_2) x1(v_1) & x2(v_2) & kge(v_1, v_2) & kge(v_2, v_1) )
Jmessage (!'(E(v) x2(v)) | '(E(v) x1(v))) -> "null pointer exception\n"
}

%action NotEqualKey(xl, x2) {
Yt x1 + " 1= "+ x2
W { x1(v_1) & x2(v_2) & kge(v_1, v_2) & kge(v_2, v_1) }
%p 'C E(v_1, v_2) x1(v_1) & x2(v_2) & kge(v_1, v_2) & kge(v_2, v_1) )
Jmessage ('(E(v) x2(v)) | '(E(v) x1(v))) -> "null pointer exception\n"

%action StructuresOK() {
%p treeness() & inOrder() & (A(v) p2_5(v)) &

(

(E(r,k1,k2, root)$parameter((root) & $parameteri(kl) & isElement(kl,root) & return(r) & down(r, k2)
|

(E(k1,k2, root)$parameter(O(root) & $parameterli(kl) & !isElement (kl,root) & !(E(r)return(r)))
)

}

%action StructuresNOK() {
%p !(treeness() & inOrder() & (A(v) p2_5(v)) &

(

(E(r,k1,k2, root)$parameterO(root) & $parameterl(kl) & isElement(kl,root) & return(r) & down(r, k2)
|

(E(k1,k2, root)$parameterO(root) & $parameteri(kl) & !isElement (kl,root) & !(E(r)return(r)))
))

}

Action File for Insert

This file can be found on the enclosed CD-ROM.

B.1.3 Input-Structures Files

Input-Structures for Contains

%n = {r,ie}

%p = {
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%n =

hp

heapcell = {r, ie}

$parameter0
$parameterl

downStar
r[$parameter0]
r[$parameteri]
kge

storeProp

p2_5 = {r,ie}

kge [$parameterl,
kge [$parameterl,

greRelation
treeness =
inOrder =

{r, ts, ie}
{

heapcell
sm

$parameter0
$parameterl

down
downStar

r [$parameter0]
r[$parameteri]

iel
ie2
ie3
left
cleft

cright
right

kge

1
1
1

1
r

{r}
{ie}

{r->r, ie->ie}
{r}
{ie}

{r->ie:1/2, ie->r:1/2, ie->ie, r->r:1/2}

{r, ie}
eft] = {r:1/2, ie:1/2}
ight] = {r:1/2, ie:1/2}

{r, ts, ie}
{ts:1/2}

{r}
{ie}

{r->ts:1/2, ts->ts:1/2}
{r->r, ie->ie, ts->ts:1/2, r->ts}

{r, ts}
{ie}

{r->ts:1/2, ts->ts:1/2}

= {r->ts:1/2, ts->ts:1/2}

I

{r->ts:1/2, ts->ts:1/2}

{r->ts:1/2, ts->ts:1/2}
{r->ts:1/2, ts->ts:1/2}
{r->ts:1/2, ts->ts:1/2}
{r->ts:1/2, ts->ts:1/2}

{ r->r:1/2, ie->ie, ts->ts:1/2,
r->ie:1/2, ie->r:1/2,
r->ts:1/2, ts->r:1/2,
ie->ts:1/2, ts->ie:1/2 }
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isStore = {ts:1/2}

storeProp = {r, ts, ie}

leftOf = {ts->ts:1/2, r->ts:1/2, ts->r:

left0fStar = { ts->ts:1/2, r->ts:1/2,
ts->r:1/2, r->r:1/2, ie->ie:

rightSubTree = {ts->ts:1/2, r->ts:1/2, ts->r:

rightOf = {ts->ts:1/2, r->ts:1/2, ts->r:

right0fStar = { ts->ts:1/2, r->ts:1/2,
ts->r:1/2, r->r:1/2, ie->ie:

leftSubTree = {ts->ts:1/2, r->ts:1/2, ts->r:

p2_5 = {r,ts,ie}

kge[$parameterl, left] = {r:1/2, ts:1/2, ie:1/2}

kge[$parameterl, right] = {r:1/2, ts:1/2, ie:1/2}

isElement = {ie->r:1/2, ie->ts:1/2, ts->r:1/2, ts->ts:1/2}

greRelation = 1

inOrder =1

treeness =1

Input-Structures for Insert (Partial)

% =

hp
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{r,ie}

{
heapcell = {r, ie}

$parameter0 = {r}
$parameterl = {ie}

downStar = {r->r, ie->ie}
r[$parameter0] = {r}
r[$parameterl] = {ie}

kge { r->ie:1/2, ie->r:1/2, ie->ie, r->r:1/2}
storeProp = {r, ie}

p2_56 = {r, ie}

{r:1/2, ie:1/2}
{r:1/2, ie:1/2}

kge[$parameterl, left]
kge[$parameterl, right]

1]

greRelation = 1
treeness =1
inOrder =1

1/2,

1/2}
1/2,

1/2,

1/2}
1/2,

r->r

:1/2}

:1/2}

:1/2}

:1/2}
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level = {r->r, ie->ie}

pl=1
}
/11111717117
Yn = {r, ts, ie}
wp = {
heapcell = {r, ts, ie}
sm = {ts:1/2}
$parameter0 = {r}
$parameterl = {ie}
down = {r->ts:1/2}
downStar = {r->r, ie->ie, ts->ts:1/2, r->ts}
r[$parameter0] = {r, ts}
r[$parameterl] = {ie}
iel = {r->ts:1/2}
ie2 = {r->ts:1/2}
ie3 = {r->ts:1/2}
kge ={ r->r:1/2, ie->ie, ts->ts:1/2,
r->ie:1/2, ie->r:1/2,
r->ts:1/2, ts->r:1/2,
ie->ts:1/2, ts->ie:1/2 }
isStore = {ts:1/2}
storeProp = {r, ts, ie}
leftOf = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
left0fStar = { ts->ts:1/2, r->ts:1/2,
ts->r:1/2, r->r:1/2, ie->ie:1/2}
rightSubTree = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
right0f = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
right0fStar = { ts->ts:1/2, r->ts:1/2,
ts->r:1/2, r->r:1/2, ie->ie:1/2}
leftSubTree = {ts->ts:1/2, r->ts:1/2, ts->r:1/2, r->r:1/2}
p2_5 = {r,ts,ie}

{r:1/2, ts:1/2, ie:1/2}
{r:1/2, ts:1/2, ie:1/2}

kge [$parameterl, left]
kge [$parameterl, right]

isElement = {ie->r:1/2, ie->ts:1/2, ts->r:1/2, ts->ts:1/2}

I
-

greRelation
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I
[

inOrder
treeness =1

level = {r->r, ie->ie, ts->ts:1/2}
pl =1

B.2 B-Tree Implementations

B.2.1 2-3-4 Tree Implementation

Structures
The Node Class

publ

ic class Node234 {

public Node234 left;

public Node234 cleft;
public Node234 cright;
public Node234 right;

public IndexElement iel;
public IndexElement ie2;
public IndexElement ie3;

The Index Element Class

publ
//

ic class IndexElement {
This object’s key.

public int key;

//

This objects data.

public Object content = null;

Algorithms

The contains-Method Note: The enclosed CD-ROM contains an additional implementation
of the contains-operation.

/%

* X X X X X X X X *

112

*
Scans the 2-3-4 tree rooted at <i>node</i> for index element <i>ie</i>.
<p/>
If an index element whose key equals that of <i>ie</i> is found,
the node at which this element is stored is returned,
otherwise <code>null</code> is returned.

Oparam node root node at which the search starts
Oparam ie index element for which to scan the tree

@return the <code>Node234</code> object referencing <i>ie</i>



B.2 B-Tree Implementations

* or <code>null</code>
*/
public static Node234 contains( Node234 node, IndexElement ie ) {
Node234 result = null;
if( node.iel == null )
node = null;
while( node !'= null ) {
if( node.ie3 != null && node.ie3.key <= ie.key) {
if( node.ie3.key == ie.key){
result = node;
node = null;
}
else
node = node.right;
}
else if( node.ie2 != null && node.ie2.key <= ie.key ) {
if( node.ie2.key == ie.key){
result = node;
node = null;
}
else
node = node.cright;
}
else if( node.iel != null && node.iel.key <= ie.key ) {
if( node.iel.key == ie.key){
result = node;
node = null;
}

else

node node.cleft;
}
else if( node.iel != null && node.iel.key > ie.key )

node = node.left;

else
node = null;
}
return result;

}

The insert-Method (lterative)

static public Node234 insert( Node234 root, IndexElement ie ) {
if( root.ie3 != null ) {

// save reference to old root

Node234 child = root;

// create new root with old root as leftmost child

root = new Node234();

Node234 z = new Node234();

// collect

IndexElement iell, iel2, iel3;
Node234 leftl, left2, cleftl, cleft2;
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iell = child.iel;
iel2 = child.ie2;
iel3 = child.ie3;

leftl = child.left;

cleftl = child.cleft;
left2 = child.cright;
cleft2 = child.right;

// spill

child.ie3 = null;
child.ie2 = null;
child.iel = null;

child.left = null;
child.cleft = null;
child.cright = null;
child.right = null;
root.iel = iel2;
child.iel = ielil;
z.iel = iel3;

root.left = child;
root.cleft = z;

child.left = leftil;

child.cleft = cleftil;

z.left = left2;

z.cleft = cleft2;

}

Node234 node = root;

Node234 child = null;

while( node.left != null ) {

// find correct child to insert the index element into
if( node.ie3 != null && node.ie3.key < ie.key)

child = node.right;

else if( node.ie2 != null && node.ie2.key < ie.key )
child = node.cright;

else if( node.iel != null && node.iel.key < ie.key )
child= node.cleft;

else

child = node.left;

// if child is already full, split it first

if( child.ie3 != null ) {

Node234 parent = node;

Node234 z = new Node234();

z.iel = child.ie3;

if( child.left != null ) {
z.left = child.cright;
z.cleft = child.right;
child.cright = null;
child.right = null;

}
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// add new child and new index element to parent

if( child == parent.left ) { // node at left was split
parent.right = parent.cright;

parent.cright = null;

parent.cright = parent.cleft;

parent.cleft = null;

parent.cleft = z;

parent.ie3 = parent.ie2;

parent.ie2 = null;

parent.ie2 = parent.iel;

parent.iel = null;

parent.iel = child.ie2;

}

else if( child == parent.cleft ) { // node at cleft was split
parent.right = parent.cright;

parent.cright = null;

parent.cright = z;

parent.ie3 = parent.ie2;

parent.ie2 = null;

parent.ie2 = child.ie2;

}

else if( child == parent.cleft ) { // node at cright was split
parent.right = z;

parent.ie3 = child.ie2;

}

child.ie2 = null;
child.ie3 null;

// refind correct child to insert the index element into
if( node.ie3 != null && node.ie3.key < ie.key)

child = node.right;

else if( node.ie2 != null && node.ie2.key < ie.key )
child = node.cright;

else if( node.iel != null && node.iel.key < ie.key )
child= node.cleft;

else

child = node.left;

}

//

node = child;

}

// insert into non-full leaf

IndexElement a,b,c;

a = node.iel; b = node.ie2; c = node.ie3;

// collect

if( node.ie2 !'= null ) {

if( node.ie2.key < ie.key ) {

c = ie;

ie = null;
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}

else

c = node.ie2;

}

if( node.iel !'= null && ie !'= null ) {
if( node.iel.key < ie.key ) {

b = ie;

ie = null;

¥

else

b = node.iel;

}

if( ie '= null ) {
a = ie;

}

// spill

node.ie3 = null;
node.ie2 = null;
node.iel = null;
node.iel = a;
node.ie2 = b;
node.ie3 = c;

return root;

}

The insert-Method (Interprocedural)

static public void split( Node234 parent, Node234 child, int index ) {
Node234 z = new Node234();
z.iesStored = 1;

z.iel = child.ie3;

if( child.left != null ) {
z.left = child.cright;
z.cleft = child.right;

X

child.iesStored = 1;

// add new child to parent

int i;
for( i = parent.iesStored + 1; i >= index + 1; i-- ) {
if( i == 3)

parent.right = parent.cright;
else if( 1 == 2 )
parent.cright = parent.cleft;
else if( i ==1)
parent.cleft = parent.left;
}
if( index == 3 )
parent.right = z;
else if( index == 2 )
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parent.cright = z;
else if ( index == 1 )
parent.cleft = z;
// add new index element to parent
for( i = parent.iesStored; i >= index; i-- ) {
if(i==2)
parent.ie3 = parent.ie2;
else if( i ==1)
parent.ie2 = parent.iel;

if( index == 3 )
parent.ie3 = child.ie2;

else if( index == 2 )
parent.ie2 = child.ie2;

else if ( index == 1 )
parent.iel = child.ie2;

parent.iesStored++;
child.ie2 = null;
child.ie3 = null;

}

static public void insertNonFull( Node234 node, IndexElement ie ) {
int 1 = node.iesStored;
// non-full leaf -> just insert ie
if( node.left == null ) {
while( 1 >= 1 ) {
if(i==2){
if( node.ie2.key > ie.key )
node.ie3 = node.ie2;
else
break;
}
if(i==1)+H
if( node.iel.key > ie.key)
node.ie2 = node.iel;
else
break;

// insert key

if( i ==3)
node.ie3 = ie;

else if( i == 2 )
node.ie2 = ie;

else if( i ==1)
node.iel = ie;

node.iesStored++;
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}

static public Node234 insert( Node234
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}

else {

}

// find correct child of node to insert the index element
while( i >=1 ) {
if(i==3) {
if( node.ie3.key <= ie.key )
break;
}
else if( i ==2) {
if( node.ie2.key <= ie.key )
break;
}
else if( i ==1) {
if( node.iel.key <= ie.key )
break;

Node234 child = null;
if(i==4)
child = node.right;
else if( i == 3 )
child = node.cright;
else if( i == 2 )
child = node.cleft;
else if( i ==1)
child = node.left;
// if child is already full, split it first
if( child.iesStored == 3 ) {
split( node, child, i );

if( i == 3 && node.ie3.key < ie.key )
i++;

else if( i == 2 && node.ie2.key < ie.key )
i++;

else if( i == 1 && node.iel.key < ie.key )
it++;
}
if( i ==4)
child = node.right;
else if( i == 3 )
child = node.cright;
else if( i == 2 )
child = node.cleft;
else if( i ==1)
child = node.left;
insertNonFull( child, ie );

root, IndexElement ie ) {
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if( root.iesStored == 3 ) {
// save reference to old root
Node234 r = root;
// create new root with old root as leftmost child
root = new Node234();
//root.isLeaf = false;
root.iesStored = 0;
root.left = r;
split( root, r, 1 );
}
insertNonFull( root, ie );
return root;

}

B.2.2 B-Tree Implementation

Structures

The Node Class

public class Node {
// order of B-trees this node fits into
public int t;

// boolean, indicating whether this is a leaf node
public boolean isLeaf;

// number of index elements stored at this node
public int iesStored = 0;

// array of child pointers
public Node[] childs;

// array of stored values
public IndexElement[] elements;

/%%
Constructor.<p/>

*

*

* Constructs a new <code>Node</code>-element fitting
* into B-trees of order <i>t</i>.
*
*
*

@param t integer value indicating the order of the
B-tree for which this node object is created

*/
public Node( int t ) {
this.t = t;

childs = new Node[ 2xt ];
elements = new IndexElement[2*t - 1];
}
}
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Algorithms
The contains-Method

/%

* XK X X X X X X X X Xx

*
pu

*
Scans the B-tree rooted at <i>n</i> for index element <i>ie</i>.
<p/>
If an index element whose key equals that of <i>ie</i> is found,
the node at which this element is stored is returned,
otherwise <code>null</code> is returned.

Oparam node root node at which the search starts
Oparam ie index element for which to scan the tree

@return the <code>Node</code> object referencing <i>ie</i>
or <code>null</code>

/
blic static Node contains( Node n, IndexElement ie ) {
int i = 0;
while( i < n.iesStored && ie.key > n.elements[i].key )

it++;
if( i < n.iesStored &% ie.key == n.elements[i].key )

return n;
if( n.isLeaf )

return null;
else

return contains( n.childs[i], ie );

The insert-Method

publ
if (
Node
Node
tree
s.is
s.ie
s.ch
spli
inse
retu
}
else
inse
retu
}

}

publ

Node
Zz.is
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ic static Node insert( Node tree, IndexElement ie ) {
tree.iesStored == T * 2 - 1 ) {

n = tree;

s = new Node( T );

= s

Leaf = false;

sStored = 0;

ilds[0] = n;
t( s, 1, n);
rtNonFull( s, ie );
rn tree;

{
rtNonFull( tree, ie );
rn tree;

ic static void split( Node node, int i, Node ithChild ) {

z = new Node( T );
Leaf = ithChild.isLeaf;
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z.iesStored = T - 1;

int j;

for( j = 0; j < T - 1; j++ )

z.elements[j] = ithChild.elements[j+T];

if ( 'ithChild.isLeaf ) {

for( j = 0; j < T; j++ )

z.childs[j] = ithChild.childs[j+T];

}

ithChild.iesStored = T - 1;

for( j = node.iesStored; j >= i; j-- )
node.childs[j+1] = node.childs[j];
node.childs[i] = z;

for( j = node.iesStored - 1; j >=1i - 1; j-- )
node.elements[j+1] = node.elements[j];
node.elements[i-1] = ithChild.elements[T-1];
node.iesStored++;

for( j =T -1; j <2*T - 1; j++ )
ithChild.elements[j] = null;

}

public static void insertNonFull( Node n, IndexElement ie ) {
int i = n.iesStored - 1;

if( n.isLeaf ) {

while( i >= 0 && ie.key < n.elements[i].key ) {

n.elements[ i + 1 ] = n.elements[ i 1;

i--3

}

n.elements[i+1] = ie;

n.iesStored++;

}

else {

while( i >= 0 && ie.key < n.elements[i].key )

i--3

if( n.childs[i].iesStored == 2*T-1 ) {

split( n, i+1l, n.childs[i] );

if( ie.key > n.elements[i].key )

i++;
}

insertNonFull( n.childs[i], ie );
}

}

B.3 J2TVLA Classes and Files

btreeTemplates.properties

LT s s s s s s s s s s s s s s s s s s s s s s s s
# Modified version of defaultTemplates.properties to cope with B-Trees.
#
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# author Joerg Herter

# date 2008/01/01

#

# NOTE

# ——o

# It is assumed that the action "Skip()" is defined somewhere.

# This is used to ensure that the CFG produced by the translation is a connected graph.

B R R R g

B B B s s s
# Templates for assignment (and more generally, definition) statements #
B s s s s
# Assignments of the form x = x 0P CONST, where OP is an integer operator and
# CONST some integer constant
AssignStmtInt = \n// line %LINE : %JIMPLE (AssignStmt)\n\
%LBEGIN %0P(%RHS_VAR); AssignRefToRef (%LHS, %RHS_VAR) %LEND

# The default template of an assignment statement.
AssignStmt = \n// line %LINE : %JIMPLE (AssignStmt)\n\
#LBEGIN AssignRefToRef (LHS, %RHS_BASE) %LEND

# The default template of an assignment statement.
AssignNewClassStmt = \n// line JLINE : %JIMPLE (AssignNewClassStmt)\n\
%LBEGIN new(%LHS) %LEND

# A template for statements of the form : x =y

# where x and y are local reference variables.

AssignRefToRefStmt = \n// line JLINE : %JIMPLE (AssignRefToRefStmt)\n\
HLBEGIN AssignRefToRef (4LHS, %RHS) JLEND

# A template for statements of the form : x = null

# where x is a local reference variable.

AssignNullToLocalStmt = \n// line %LINE : %JIMPLE (AssignNullToLocalStmt)\n\
%LBEGIN SetNull(%LHS) %LEND

# A template for statements of the form : x.n =y

# where y is a reference variable and n is a reference field.

AssignRefToInstanceFieldRefStmt = \n// line %LINE : %JIMPLE (AssignRefToInstanceFieldRefStmt)\n\
%LBEGIN AssignRefTo)LHS_FIELDStmt (%LHS_BASE, %RHS) %LEND

# %LBEGIN AssignNullToInstanceFieldRefStmt (%LHS_BASE, J%LHS_FIELD);
# AssignRefToInstanceFieldRefStmt (%, LHS_BASE, %LHS_FIELD, %RHS) JLEND

# A template for statements of the form : x.n = null
# where n is a reference field.
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AssignNullToInstanceFieldRefStmt = \n// line JLINE : }JIMPLE (AssignNullToInstanceFieldRefStmt)\n\
HLBEGIN AssignNullToInstanceFieldRefStmt (%LHS_BASE, J%LHS_FIELD) %LEND

# A template for statements of the form : x = y.n

# where x is a reference variable and n is a reference field.

AssignInstanceFieldRefToRefStmt = \n// line }LINE : %JIMPLE (AssignInstanceFieldRefToRefStmt)\n\
%LBEGIN AssignFieldRefToRef (,LHS, %RHS_BASE, %RHS_FIELD) %LEND

HHH
# Templates for conditional statements #
B s

# This statement is handled conservatively, by adding transitions to both targets
# (the fall though target and the one intended by the condition).
IfStmt = \n// line %LINE : %JIMPLE (IfStmt)\n\

%LBEGIN %PRED_TRUE(%LHS, %RHS) %LTRUE\n\

%LBEGIN %PRED_FALSE(}%LHS, %RHS) %LFALSE

# A template for statements of the form : if (x == null).

# The macro %LHS corresponds to x.

IfEqualToNullStmt = \n// line %LINE : %JIMPLE (IfEqualToNullStmt)\n\
%LBEGIN IsNullVar (%LHS) JLTRUE\n\
%LBEGIN IsNotNullVar(%LHS) JLFALSE

# A template for statements of the form : if (b).

# The macro %LHS corresponds to b.

IfBoolStmt = \n// line JLINE : %JIMPLE (IfBoolStmt)\n\
%LBEGIN IsTrue(%LHS) %LTRUE\n\
%LBEGIN IsFalse(%LHS) %LFALSE

# A template for statements of the form : if (bl == b2).
# The macro %LHS corresponds to bl and the macro %RHS corresponds to b2.
IfEqualBoolStmt = \n// line LINE : %JIMPLE (IfEqualBoolStmt)\n\
%LBEGIN IsEqualBool(%LHS, %RHS) %LTRUE\n\
%LBEGIN IsNotEqualBool(}LHS, %RHS) %LFALSE

# A template for statements of the form : if (x == y)
# where both x and y are reference variables.
# The macro %LHS corresponds to bl and the macro %RHS corresponds to b2.
IfEqualRefStmt = \n// line }LINE : %4JIMPLE (IfEqualRefStmt)\n\
HLBEGIN IsEqualRef (%LHS, %RHS) %LTRUE\n\
HLBEGIN IsNotEqualRef (%LHS, %RHS) %LFALSE

# A template for statements of the form : return v.

ReturnStmt = \n// line %LINE : % JIMPLE (ReturnStmt)\n\
%LBEGIN AssignRefToRef (return, %RETURN_ACTUAL) %%LCOMMON\n\
%MULTIPLE{%J%LCOMMON Skip() %LTARGET\n}

BTreeTranslator.java and Main.java
The contents of these files can be found on the enclosed CD.
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C Contents of the Enclosed
CD-ROM
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C Contents of the Enclosed CD-ROM

The enclosed CD-ROM contains all files, programs, tools, and documents to reproduce the analyses
described in this thesis. The following pages list the contents of the CD-ROM.

./towards _shape analysis _of btrees.pdf This document as a PDF file.
./analyses This folder contains all TVLA input files to redo our analyses.

./analyses/contains(1) This folder contains all TVLA input files to redo our shape analysis
of the first implementation of a contains-operation on 2-3-4 trees.

./analyses/contains(2) This folder contains all TVLA input files to redo our shape analysis
of the second, more intuitive implementation of a contains-operation on 2-3-4 trees.

./analyses/insert This folder contains all TVLA input files to redo our shape analyses of the
insert operation.

./analyses/excursus This folder contains all TVLA input files to redo the shape analysis
described in the excursus about integer arithmetics.

./java All Java sources created in the course of this work are residing in this folder.

./java/mytranslators Java package containing our modified translator classes used with J2TVLA.

./java/tree_implementations Folder containing our Java implementations of various oper-
ations on 2-3-4 trees and general B-trees.

./java/integer _arithmetics/ This folder contains the Java method we analyzed in the ex-
cursus about integer arithmetics.

. / software This folder contains software and tools we used.
./software/tvla TVLA Framework version 3.0-alpha.

./software/j2tvla The modified version of the J2TVLA Framework we used.
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