
WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer1 Gernot Gebhard2

1Saarland University

2AbsInt GmbH

WCET Workshop, July 2008



Overview

1 Preemptive Scheduling
Targeted System
Preemptive vs. Non-preemptive Scheduling

2 Influence Preemption Costs
Cache Set Classification
Cost Function
Optimization

3 WCET Analysis for Preemptive Scheduling

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Targeted System and Notation

• set of n tasks τ1 . . . τn

• scheduled preemptively

• combined data/instruction cache

• k-way LRU or direct-mapped caches
(for the sake of simplicity)

• task-to-task relation: τi ` τj ⇔ task τi can preempt task τj
(for instance, given by priorities, data dependencies, etc.)

• set of data fragments Di = {di ,1, . . . , di ,l} for each task
(continuous data block such as arrays, instruction block, etc.)

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Targeted System and Notation

• set of n tasks τ1 . . . τn

• scheduled preemptively

• combined data/instruction cache

• k-way LRU or direct-mapped caches
(for the sake of simplicity)

• task-to-task relation: τi ` τj ⇔ task τi can preempt task τj
(for instance, given by priorities, data dependencies, etc.)

• set of data fragments Di = {di ,1, . . . , di ,l} for each task
(continuous data block such as arrays, instruction block, etc.)

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Targeted System and Notation

• set of n tasks τ1 . . . τn

• scheduled preemptively

• combined data/instruction cache

• k-way LRU or direct-mapped caches
(for the sake of simplicity)

• task-to-task relation: τi ` τj ⇔ task τi can preempt task τj
(for instance, given by priorities, data dependencies, etc.)

• set of data fragments Di = {di ,1, . . . , di ,l} for each task
(continuous data block such as arrays, instruction block, etc.)

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Preemptive vs. Non-preemptive Scheduling

Non-preemptive scheduling Preemptive scheduling

• tasks are running to
completion

• (nearly) no inter-task
cache-interference

• timing analysis feasible

• tasks may be preempted

• strong inter-task
interference

• timing analysis much more
complex (due to cache
interference)

• some task-sets only schedulable using preemptive scheduling

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Preemptive vs. Non-preemptive Scheduling - Example

Non-preemptive scheduling:
• unknown cache states only at the beginning

• tasks are running to completion

Start End

Preemptive scheduling:
• possible preemptions at unknown points

• unknown cache states at the beginning and after preemption

• preempting task changes cache state of preempted task

Start EndPreemption Resume

additional costs to reload cache entries

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Influence of the Memory Layout

Evicted cache-entries determined by the memory layout
(i.e. the arrangement of code and data in the memory)

Example:

• direct mapped cache of size n

• 3 tasks (τ1, τ2, τ3) of size n/2

• τ1 can preempt the other two (τ1 ` τ2 and τ1 ` τ3)
Memory

τ1

τ2

τ3

0

n/2− 1

n − 1

Cache

τ1
τ2

τ3

0 n/2− 1 n − 1

Layout 1

bad performance

Memory

τ2

τ1

τ3

0

n/2− 1

n − 1

Cache

τ2
τ1

τ3

0 n/2− 1 n − 1

Layout 2

good performance

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Cache-Set Classification

all data fragments di ,j on all cache sets s are classified as follows

cl(di ,j , s) =

persistent: di ,j does not occupy s or at most k data fragments
of tasks that can preempt task τi occupy cache set s
⇒ even if task τi is preempted, di ,j on cache set s
still cached

endangered: di ,j occupies s and at least k + 1 data fragments of
tasks that can preempt task τi occupy cache set s
⇒ if task τi is preempted, di ,j on cache set s could
be evicted

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Changing the Memory Layout

Different memory layouts lead to different preemption costs.
We need

• metric to compare different memory layouts,

• optimization method.

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Metric on Memory Layouts

costs of memory layout CL determined by all endangered data
fragments over all cache sets

CL =
∑
di,j

∑
cache set s

W (di ,j) · confl(di ,j , s)

with

confl(di ,j , s) =

{
1 if cl(di ,j , s) = endangered
0 if cl(di ,j , s) = persistent

• weight function W used to increase precision

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Metric on Memory Layouts (cont’d)

Data fragments do not contribute equally to the preemption costs
(for instance, straight-line code vs. loops)

• weight function only approximates preemption costs

• weight data fragments according to their uses

• evaluation and testing of different weight function still future
work

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Optimization

• restriction to hole-free layouts
⇒ layout represented as a permutation

• finding optimal layout (still) NP-complete
⇒ find local instead of global optimum

Hill-climbing:

1 start with random layout L

2 search for a better layout L′ in the set of neighbors of L

3 if L′ exists, goto 1 with L := L′

4 restart searching with next best layout at most P times

• step 4 is used to jump over local hills

• parameter P determines how often

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



WCET Analysis for Preemptive Scheduling

Tasks

Annotations

Cache-Set Classification

WCET Analysis WCETpreempt

• cache-set classification is new input to the analysis

• between cache analysis and low-level analysis

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



WCET Analysis for Preemptive Scheduling (cont’d)

In case a cache-entry is classified as:

persistent analysis behaves as usual (even in case of
preemption, cache-entry still valid)

endangered depends on the cache-analysis:

hit: cache-hit or cache-miss
miss: surely a cache-miss

unknown: cache-hit or cache-miss

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Structure of the Approach

Tasks

Schedule

Structural Analysis

Optimization

WCET Analysis

Memory Layout

WCETpreempt

cost function

classification

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Conclusions...

• optimization and analysis of the memory layout

• classification into endangered and persistent cache-entries

• straight-forward extension of the WCET analysis

... and Future Work

• implement and evaluate the approach

• evaluate (and improve) metric on the memory layouts

• extend by information about preemption points

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Conclusions...

• optimization and analysis of the memory layout

• classification into endangered and persistent cache-entries

• straight-forward extension of the WCET analysis

... and Future Work

• implement and evaluate the approach

• evaluate (and improve) metric on the memory layouts

• extend by information about preemption points

WCET Analysis for Preemptive Scheduling

Sebastian Altmeyer, Gernot Gebhard WCET Workshop, July 2008



Thanks for your attention!


	Preemptive Scheduling
	Targeted System
	Preemptive vs. Non-preemptive Scheduling

	Influence Preemption Costs
	Cache Set Classification
	Cost Function
	Optimization

	WCET Analysis for Preemptive Scheduling
	Conclusions

