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Targeted System and Notation

• set of n tasks τ1 . . . τn

• scheduled preemptively

• combined data/instruction cache

• k-way LRU or direct-mapped caches
(for the sake of simplicity)

• task-to-task relation: τi ` τj ⇔ task τi can preempt task τj
(for instance, given by priorities, data dependencies, etc.)

• set of data fragments Di = {di ,1, . . . , di ,l} for each task
(continuous data block such as arrays, instruction block, etc.)
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Preemptive vs. Non-preemptive Scheduling

Non-preemptive scheduling Preemptive scheduling

• tasks are running to
completion

• (nearly) no inter-task
cache-interference

• timing analysis feasible

• tasks may be preempted

• strong inter-task
interference

• timing analysis much more
complex (due to cache
interference)

• some task-sets only schedulable using preemptive scheduling
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Preemptive vs. Non-preemptive Scheduling - Example

Non-preemptive scheduling:
• unknown cache states only at the beginning

• tasks are running to completion

Start End

Preemptive scheduling:
• possible preemptions at unknown points

• unknown cache states at the beginning and after preemption

• preempting task changes cache state of preempted task

Start EndPreemption Resume

additional costs to reload cache entries
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Influence of the Memory Layout

Evicted cache-entries determined by the memory layout
(i.e. the arrangement of code and data in the memory)

Example:

• direct mapped cache of size n

• 3 tasks (τ1, τ2, τ3) of size n/2

• τ1 can preempt the other two (τ1 ` τ2 and τ1 ` τ3)
Memory

τ1

τ2

τ3

0

n/2− 1

n − 1

Cache

τ1
τ2

τ3

0 n/2− 1 n − 1

Layout 1

bad performance

Memory

τ2

τ1

τ3

0

n/2− 1

n − 1

Cache

τ2
τ1

τ3

0 n/2− 1 n − 1

Layout 2

good performance
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Cache-Set Classification

all data fragments di ,j on all cache sets s are classified as follows

cl(di ,j , s) =

persistent: di ,j does not occupy s or at most k data fragments
of tasks that can preempt task τi occupy cache set s
⇒ even if task τi is preempted, di ,j on cache set s
still cached

endangered: di ,j occupies s and at least k + 1 data fragments of
tasks that can preempt task τi occupy cache set s
⇒ if task τi is preempted, di ,j on cache set s could
be evicted
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Changing the Memory Layout

Different memory layouts lead to different preemption costs.
We need

• metric to compare different memory layouts,

• optimization method.
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Metric on Memory Layouts

costs of memory layout CL determined by all endangered data
fragments over all cache sets

CL =
∑
di,j

∑
cache set s

W (di ,j) · confl(di ,j , s)

with

confl(di ,j , s) =

{
1 if cl(di ,j , s) = endangered
0 if cl(di ,j , s) = persistent

• weight function W used to increase precision
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Metric on Memory Layouts (cont’d)

Data fragments do not contribute equally to the preemption costs
(for instance, straight-line code vs. loops)

• weight function only approximates preemption costs

• weight data fragments according to their uses

• evaluation and testing of different weight function still future
work
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Optimization

• restriction to hole-free layouts
⇒ layout represented as a permutation

• finding optimal layout (still) NP-complete
⇒ find local instead of global optimum

Hill-climbing:

1 start with random layout L

2 search for a better layout L′ in the set of neighbors of L

3 if L′ exists, goto 1 with L := L′

4 restart searching with next best layout at most P times

• step 4 is used to jump over local hills

• parameter P determines how often
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WCET Analysis for Preemptive Scheduling

Tasks

Annotations

Cache-Set Classification

WCET Analysis WCETpreempt

• cache-set classification is new input to the analysis

• between cache analysis and low-level analysis
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WCET Analysis for Preemptive Scheduling (cont’d)

In case a cache-entry is classified as:

persistent analysis behaves as usual (even in case of
preemption, cache-entry still valid)

endangered depends on the cache-analysis:

hit: cache-hit or cache-miss
miss: surely a cache-miss

unknown: cache-hit or cache-miss
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Structure of the Approach

Tasks

Schedule

Structural Analysis

Optimization

WCET Analysis

Memory Layout

WCETpreempt

cost function

classification
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Conclusions...

• optimization and analysis of the memory layout

• classification into endangered and persistent cache-entries

• straight-forward extension of the WCET analysis

... and Future Work

• implement and evaluate the approach

• evaluate (and improve) metric on the memory layouts

• extend by information about preemption points
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Thanks for your attention!
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