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Abstract

The category TOP of topological spaces is not cartesian closed, but can be embedded
into the cartesian closed category CONV of convergence spaces. It is well-known that the
category DCPO of dcpos and Scott continuous functions can be embedded into TOP, and
so into CONV, by considering the Scott topology. We propose a different, “cotopologi-
cal” embedding of DCPO into CONV, which, in contrast to the topological embedding,
preserves products. If X is a cotopological dcpo, i.e. a dcpo with the cotopological CONV-
structure, and Y is a topological space, then [X → Y ] is again topological, and conversely,
if X is a topological space, and Y a cotopological complete lattice, then [X → Y ] is again
a cotopological complete lattice. For a dcpo D, the topological and the cotopological
convergence structures coincide if and only if D is a continuous dcpo. Moreover, cotopo-
logical dcpos still enjoy some of the properties which characterise continuous dcpos. For
instance, all cotopological complete lattices are injective spaces (in CONV) w.r.t. topo-
logical subspace embeddings.

1 Introduction

It is well-known that the category DCPO of dcpos and Scott continuous functions can be
embedded into TOP, the category of topological spaces and continuous functions, by endowing
each dcpo D with its Scott topology, leading to the topological space Ds. This embedding
hinges on the fact that a function between dcpos is Scott continuous (i.e., preserves directed
joins) if and only if it is continuous w.r.t. the Scott topologies (i.e., the inverse images of Scott
open sets are Scott open).

This embedding provides a useful way to look at dcpos as topological spaces, yet it has its
drawbacks. For instance, it does not preserve products, i.e., the Scott topology of a product
dcpo is not necessarily the same as the product topology derived from the two Scott topologies
(in short, (D × E)s = Ds × Es does not generally hold); see the discussion in [5, page 106].
There are even complete lattices L such that (L× L)s 6= Ls × Ls.

∗This paper was written while the author was research fellow in the Department of Computing at Imperial

College of Science, Technology, and Medicine, London, UK.
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Connected with this product problem is a problem about binary joins in complete lattices.
Binary join ∨ : L × L → L is obviously Scott continuous, and therefore continuous in the
sense (L× L)s → Ls. Yet it is not always continuous in the proper topological sense, i.e., as
a function Ls × Ls → Ls.

There is a similar problem with pointwise join of functions. While the pointwise join of a
directed set of continuous functions is continuous again, this does not hold for the pointwise
join of two functions: there are continuous functions f, g : X → Ls such that their pointwise
join f ∨ g : X → Ls is not continuous (in [9, 8], we had to work around this problem by
restricting attention to those X where f ∨ g is continuous again).

A concrete example where all these problems occur is the complete lattice L constructed in [13]
as an example of a complete lattice which is not sober in its Scott topology. If ∨ : Ls×Ls → Ls

were continuous, then Ls would be sober by a result in the Compendium [5, Cor. II-1.12].
If (L × L)s were equal to Ls × Ls, then ∨ : Ls × Ls → Ls would be continuous as a Scott
continuous function. Finally, with X = Ls × Ls, we have two continuous functions X → Ls,
namely the two projections, whose pointwise binary join ∨ : X → Ls is not continuous.

The problems listed above are not very well-known because they do not occur for continuous
dcpos (cf. II-4.12 and II-4.13 in the Compendium [5]). Yet they can be avoided altogether by
considering a different embedding of DCPO into a topological category—not quite TOP itself,
but the larger category CONV of convergence spaces [18] (also known as filter spaces [12]),
whose objects are characterised by the convergence properties of filters.

Every topological space carries a notion of filter convergence which leads to an embedding
of TOP as a reflective full subcategory into CONV. Moreover, CONV is cartesian closed in
contrast to TOP, i.e., it provides a function space construction such that [X × Y → Z] and
[X → [Y → Z]] are naturally isomorphic, and λ-calculus can be interpreted in the category.

In this paper, we propose a new embedding (−)c of DCPO into CONV, which, in contrast to
the topological embedding (−)s, preserves products and avoids all the problems listed above:
We have (D × E)c = Dc × Ec for all dcpos D and E, ∨ : Lc × Lc → Lc is continuous for
all complete lattices L, and pointwise joins of continuous functions X → Lc are continuous
again. The price for this is that Dc is not always topological; we shall see that Dc is topological
(i.e., is an object of the full reflective subcategory TOP of CONV) if and only if Dc = Ds,
if and only if D is a continuous dcpo. (This gives a new proof that continuous dcpos are
well-behaved w.r.t. (−)s.)

The convergence spaces Dc, which we call cotopological dcpos, exhibit an interesting behaviour
in the function space construction:

• If X = Dc is a cotopological dcpo and Y is topological, then [X → Y ] is topological.

• If X is topological and Y = Lc is a cotopological complete lattice, then [X → Y ] is a
cotopological complete lattice again.

These properties were the reason for choosing the name “cotopological”.

As indicated above, a dcpo D is continuous iff Dc is topological, or shortly, continuous
= topological + cotopological. Indeed, the cotopological dcpos (lattices) still enjoy many
properties familiar from continuous dcpos (lattices). For instance, it is well-known that
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continuous lattices are injective spaces w.r.t. topological embeddings [5, Section II-3]. Here, we
show that Lc is injective w.r.t. topological embeddings for any complete lattice L whatsoever.

We start out by a quick recap of filters (Section 2) and convergence spaces (Section 3). There
is not much new in there, and most proofs are omitted. In Section 4, we rule out some ugly
convergence spaces by imposing certain “niceness conditions” which are obeyed by topological
spaces and preserved by product, subspace, and exponentiation. Then we consider d-spaces
in Section 5, which are spaces whose structure is similar to that of dcpos. In Section 6, Ds is
identified as the strongest topological d-space structure on D, while Dc is introduced as the
strongest d-space structure of all. The final, quite large Section 7 is devoted to prove the main
properties of cotopological dcpos (or lattices), i.e., the properties that have been presented in
this introduction, and a few more.

2 Filters

2.1 The Lattice of Filters

A filter F on a set X is a subset of the powerset PX of X which is closed under finite
intersection (in particular contains X) and extension to supersets.

(1) If A ∈ F and A ⊆ B, then B ∈ F ;

(2) X ∈ F ; (3) if A and B are in F , then so is A ∩B.

The set of all filters on X is denoted by ΦX.

Arbitrary intersections of filters are filters, so ΦX forms a complete lattice when ordered by
inclusion ‘⊆’. Besides, directed unions of filters are filters. The bottom element of (ΦX,⊆)
is {X}, while the top element is the improper filter PX, the (unique) filter containing the
empty set. Since filters are ideals in (PX,⊇), (ΦX,⊆) is an algebraic lattice.

2.2 “Inner Ordering”

If one is more interested in the sets which are in a filter than in the filter as a whole, then it
is more natural to order filters as follows [18]:

A ≤i B ⇐⇒ ∀B ∈ B ∃A ∈ A : A ⊆ B.

Actually, A ≤i B is equivalent to A ⊇ B, so ‘≤i’ is exactly the opposite of ‘⊆’. The lattice
(ΦX,≤i) will be denoted by ΦiX.

A filter base on X is a downward directed set of subsets of X. Each filter base B generates
a filter [B] = {A ⊆ X | A ⊇ B for some B ∈ B}. If B is already a filter, then [B] = B. The
ordering ‘≤i’ can be characterised via filter bases:

[A] ≤i [B] ⇐⇒ ∀B ∈ B ∃A ∈ A : A ⊆ B.

Indeed, one could introduce ‘≤i’ as a preorder on filter bases, and define filters as equivalence
classes w.r.t. this preorder.
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In the following, [{. . .}] is usually abbreviated by [. . .]. Meets and joins w.r.t. ‘≤i’ will be
denoted by ‘∧’ and ‘∨’.

(1) Since ‘≤i’ is the opposite of ‘⊆’, joins are intersections:
∨

i∈I Ai =
⋂

i∈I Ai.

(2) Alternatively, binary joins are given by [A]∨ [B] = [A∪B | A ∈ A, B ∈ B]. This does not
depend on the choice of the two bases.

(3) Generalising (2), arbitrary joins are given as
∨

i∈I [Bi] = [
⋃

i∈I Bi | (Bi)i∈I ∈
∏

i∈I Bi].

(4) Binary meet is [A]∧ [B] = [A∩B | A ∈ A, B ∈ B]. Unfortunately, this does not generalise
to arbitrary meets, and does not correspond to binary union of filters, which in general
does not yield a filter again.

(5) Filtered meets are given by directed unions or
∧

i∈I [Bi] = [B | B ∈ Bi for some i ∈ I].

(6) Arbitrary meets are hence given as∧
i∈I [Bi] = [

⋂
i∈F Bi | (Bi)i∈F ∈

∏
i∈F Bi for some F ⊆fin I].

The lattice ΦiX is finitely distributive, but there are examples for A∧
∨

i∈I Bi 6=
∨

i∈I(A∧Bi).

2.3 Principal Filters

For A ⊆ X, {A} is a filter base. We abbreviate [{A}] by [A]; this is usually called a principal
filter (one might also call it a set filter). For x, x1, . . . , xn ∈ X, we further abbreviate
[{x1, . . . , xn}] by [x1, . . . , xn], and in particular, [{x}] by [x], and [∅] by [ ].

Note that A ≤i [B] iff B ∈ A, and [A] ≤i [B] iff A ⊆ B. Further,
∨

i∈I [Ai] = [
⋃

i∈I Ai],
whence [x1, . . . , xn] = [x1] ∨ · · · ∨ [xn], and [A] ∧ [B] = [A ∩ B], and finally, [ ] and [X] are
bottom and top in ΦiX, respectively. Thus, [−] : PX → ΦiX is an order embedding which
preserves arbitrary joins and finite meets (but not infinite meets). This is the main advantage
of the “inner view”: filters on X can be considered as generalised subsets of X, and we shall
see that many properties familiar from PX carry over to ΦiX.

2.4 Filters and Functions

A function f : X → Y induces two functions on subsets: f+ : PX → PY with f+A = {fa |
a ∈ A} for A ⊆ X, and f− : PY → PX with f−B = {a ∈ X | fa ∈ B} for B ⊆ Y . These
functions are adjoints, i.e., f+A ⊆ B ⇐⇒ A ⊆ f−B, and so f+ preserves all joins and f−

all meets. In addition, f− preserves all joins as well.

Both functions can be extended to f+ : ΦX → ΦY and f− : ΦY → ΦX in the obvious way:
f+[A] = [f+A | A ∈ A] and f−[B] = [f−B | B ∈ B]. Then f+[A] = [f+A] for A ⊆ X, hence
f+[ ] = [ ] and f+[x] = [fx] for x in X. The assignment f 7→ f+ is functorial.

These extensions are still adjoints, i.e., f+A ≤i B ⇐⇒ A ≤i f−B, and so f+ preserves
all joins and f− all meets. As in the set case, f− preserves all joins as well, and unlike
the set case, f+ preserves filtered meets. Using the adjoint property, the set f+A can be
characterised as follows: B ∈ f+A ⇔ f+A ≤i [B]⇔ A ≤i [f−B]⇔ f−B ∈ A.
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2.5 Product of Filters

For A in ΦX and B ∈ ΦY , let A × B = [A × B | A ∈ A, B ∈ B] ∈ Φ(X × Y ). Then
[A] × [B] = [A × B], whence in particular [x] × [y] = [(x, y)]. Further, [ ] × B = A × [ ] = [ ];
and A × B 6= [ ] for A,B 6= [ ]. There are more properties familiar from sets (where π1 and
π2 are the projections): π+

1 (A × B) ≤i A with ‘=’ if B 6= [ ]; the dual property with π2;
C ≤i π+

1 C ×π+
2 C; and (f × g)+(A×B) = f+A× g+B. Furthermore, ‘×’ distributes over finite

joins (but not over infinite ones!).

3 Convergence Spaces

3.1 Definition

There are several notions of convergence spaces in the literature, and worse, there are several
names for the same thing: some authors prefer the name filter spaces [12, 11], while others use
the name convergence spaces [18, 2, 14]. Our definition below corresponds to the convergence
spaces of [18, 2] and the filter spaces of [12], while the convergence spaces of [14] and the filter
spaces of [11] form a smaller class.

Convergence spaces are characterised by specifying which filters converge to which points.
Formally, a convergence space is a set X together with a relation ‘↓’ between ΦX and X

such that [x] ↓ x holds for all x in X (point filter axiom), and A ↓ x and B ≤i A (i.e.,
B ⊇ A) implies B ↓ x (subfilter axiom). (See Section 4 for potential further axioms.) A
function f : X → Y between two convergence spaces is continuous if A ↓ x implies f+A ↓ fx.
The category of convergence spaces and continuous functions is called CONV. Note that all
constant functions are continuous because of the point filter axiom.

A ↓ x is usually read as ‘A converges to x’, or ‘x is a limit of A’. Thus, the relation ‘↓’ is
called the convergence relation or convergence structure of the convergence space. A filter has
many different limits in general; the set {x ∈ X | A ↓ x} of all limit points of A is denoted
by LimA. In particular, the conditions for convergence spaces imply that the improper filter
[ ] converges to every x in X. Usually, the improper filter is omitted, but it does not cause
any harm in the definition of the category because f+[ ] = [ ], and so f+[ ] ↓ fx is guaranteed
for any f .

If ↓1 and ↓2 are two convergence structures on the same set X, we say ↓1 is stronger than
↓2 and ↓2 is weaker than ↓1 if the identity function (X, ↓1) → (X, ↓2) is continuous, i.e., if
A ↓1 x⇒ A ↓2 x (the definition in terms of continuity is in accordance with topology). The
strongest convergence structure on a set X is the discrete structure with A ↓ x iff A ≤i [x],
and the weakest structure is the indiscrete structure where every filter converges to every
point. If X is discrete, all functions f : X → Y are continuous, and likewise for indiscrete Y .

In so far as no confusion can result, we follow the custom of topology using the name of
the underlying set X as a shorthand for the convergence space (X, ↓X), and using the same
symbol ‘↓’ for the convergence relations of all spaces.
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3.2 Initial Constructions

Similar to the initial topology for a family of functions, there is an initial convergence struc-
ture. Let X be a set, (Yi)i∈I a family of convergence spaces, and (fi : X → Yi)i∈I a family
of (arbitrary) functions. The initial convergence structure ‘↓’ on X is defined by A ↓ x iff
f+

i A ↓ fix for all i in I (check that the two axioms are satisfied). The universal property of
the initial construction is that for all convergence spaces Z and all functions g : Z → X, g is
continuous if and only if for all i in I, the compositions fi ◦ g : Z → Yi are continuous.

The product of a family (Xi)i∈I of convergence spaces is the set
∏

i∈I Xi with the initial
structure for the projections πi :

∏
i∈I Xi → Xi. Hence A ↓ x in the product iff π+

i A ↓ xi for
all i in I. Note that A ↓ x in X and B ↓ y in Y implies A× B ↓ (x, y) in X × Y .

If X is a subset of the convergence space Y , then X with the initial structure induced by the
inclusion map e : X → Y is called a subspace of Y . By this definition, e becomes continuous,
and moreover, for any convergence space Z and any f : Z → X, f is continuous if and only
if e ◦ f : Z → Y is continuous.

The subspace structure is characterised byA ↓ x in X iff e+A ↓ ex in Y . A function e : X → Y

with this property is called initial or a pre-embedding ; in this case X is called a pre-subspace
of Y . Injective pre-embeddings are called embeddings. If e : X → Y is an embedding, then
X is isomorphic to the subspace e+X of Y , and we may call X a subspace of Y as well.

A special case of the subspace construction is the construction of the equaliser of continuous
f, g : X → Y as the subspace {x ∈ X | fx = gx} of X.

3.3 Function Space

For two convergence spaces X and Y , the function space [X → Y ] = Y X is the set of
continuous functions from X to Y with F ↓ f iff for all A ↓ x in X, F · A ↓ fx holds in Y .
Here, F ·A is [F ·A | F ∈ F , A ∈ A], where F ·A = {fa | f ∈ F, a ∈ A}. Alternatively, F ·A
can be understood as E+(F ×A) where E : [X → Y ]×X → Y is the evaluation map.

With this function space, CONV becomes a cartesian closed category, and therefore all closed
lambda expressions denote continuous functions. This implies in particular that for each x in
X, the function @x = λf. fx from [X → Y ] to Y is continuous. Yet the function space is not
initial for the family (@x)x∈X .

Composition ◦ : [Y → Z] × [X → Y ] → [X → Z] is continuous. For continuous f : Y → Z,
fX : Y X → ZX with fX(g) = f ◦ g is continuous, and this operation preserves initial
constructions [10]: if Y is initial for (fi : Y → Zi)i∈I , then Y X is initial for (fX

i : Y X →
ZX

i )i∈I . In particular, if e : Y ↪→ Z is a (pre-)embedding, then so is eX : [X → Y ] ↪→ [X → Z],
and

∏
i∈I [X → Yi] ∼= [X →

∏
i∈I Yi] holds.

3.4 Topological Spaces as Convergence Spaces

In a topological space (X,O), a filter A ∈ ΦX converges to x in X if A contains all opens
that contain x. This can be expressed differently: A set N ⊆ X is a neighbourhood of a
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point x of X if there is some open O in O such that x ∈ O ⊆ N . The collection N (x) of
all neighbourhoods of x is a filter, and the above definition of convergence amounts to saying
A ↓O x iff A ⊇ N (x) iff A ≤i N (x). Clearly, the two convergence space axioms are satisfied.
Note that the discrete topology yields the discrete convergence structure, and likewise for the
indiscrete case.

A function f : (X,O) → (Y,O′) is continuous in the topological sense if and only if f :
(X, ↓O) → (Y, ↓O′) is continuous in the convergence space sense. Thus, the construction
(X,O) 7→ (X, ↓O) is the object part of a full and faithful functor C : TOP → CONV, and
TOP can be considered as a full subcategory of CONV (the topological convergence spaces).
This subcategory is closed under initial constructions, but not under function space (otherwise
TOP would be cartesian closed). If X is a set, (Yi)i∈I a family of topological spaces, and
(fi : X → Yi)i∈I a family of (arbitrary) functions, then it does not matter whether the initial
construction in CONV is applied to the spaces CYi, or whether C is applied to the result of
the initial construction in TOP; the final result is the same in both cases.

Thus products and (pre-)subspaces of topological convergence spaces are again topological.
Pre-embeddings e : X → Y between topological spaces are characterised by the property that
each open U of X is of the form e−V for some open V of Y .

In the sequel, X and CX will often be identified. A particular example is Sierpinski space
Ω = {0, 1} where all filters converge to 0, while [1] is the only proper filter converging to 1,
i.e., B ↓ 1 iff B ≤i [1], iff {1} ∈ B.

3.5 The Induced Topology

Using Sierpinski space, we can define a topology on (the carrier set of) a convergence space X

as follows: A subset O of X is open iff its characteristic function χO : X → Ω is continuous.
This is equivalent to A ↓ x ⇒ χ+

OA ↓ χOx. By the characterisation of convergence in Ω, we
may restrict to the case χOx = 1, or x ∈ O. Thus, χO is continuous iff A ↓ x ∈ O implies
χ+

OA ↓ 1. The latter means {1} ∈ χ+
OA, or O = χ−O{1} ∈ A. Thus we obtain that O is open

iff A ↓ x ∈ O implies O ∈ A.

Arbitrary unions and finite intersections of opens are open, so we get indeed a topology on X,
the induced topology. When we speak of open or closed subsets of a convergence space, this
always refers to the induced topology. By the definition of open sets, A ↓ x always implies
A ≤i N (x) where N (x) is the neighbourhood filter of x in the induced topology. If X is a
topological space, the induced topology of CX is the original topology so that no confusion
can arise, and A ↓ x is equivalent to A ≤i N (x).

Let TX be the topological space with the induced topology. If f : X → Y is continuous in the
convergence space sense, then f−V is open for every open set V of Y , and so f : TX → TY

is continuous in the topological sense. The opposite implication does not hold in general, but
it holds for topological convergence spaces. More precisely, if X is a convergence space and
Y a topological space, then f : X → CY is CONV-continuous if and only if f : TX → Y

is TOP-continuous, i.e., T is left adjoint to C, and since T ◦ C = id, TOP is a reflective
subcategory of CONV.
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Note that in general T(X × Y ) is different from TX ×TY (the induced topology of X × Y is
not always the product topology; examples will come up later). If U is open in X and V is
open in Y , then U × V is open in X × Y (because U × V = π−1 U ∩ π−2 V ), but these sets do
not form a basis of the induced topology of X × Y in general. (As already pointed out, these
problems do not occur if X and Y are topological convergence spaces; in this case, X × Y is
again a topological convergence space with the product topology.)

Subspaces suffer from a similar problem. The following finite example was provided by Matias
Menni.

Example 3.1 Let Y = {−1, 0, 1} with A ↓ −1 iff A ≤i [−1, 0], A ↓ 1 iff A ≤i [1, 0], and
finally A ↓ 0 iff A ≤i [−1, 0, 1], i.e., all filters converge to 0. If 1 is in an open set U , then
U ∈ [1, 0] and so 0 ∈ U . If 0 is in U , then U ∈ [−1, 0, 1] and so U = Y . Similar arguments
hold for −1. Thus, the induced topology of Y is the indiscrete topology (although Y

does not have the indiscrete convergence structure). Let X be the subspace {−1, 1} of Y

(taken in CONV). We get A ↓X 1 iff A ≤i [1], and likewise for −1, i.e., X is discrete, and
therefore, TX (discrete) is not a topological subspace of TY (indiscrete).

Of course, there are no problems for subspaces of topological convergence spaces.

3.6 The Induced Preorder

The induced preorder of a convergence space X is the specialisation preorder of its induced
topology, i.e., x v y, iff x ∈ cl{y}, iff y is in every open containing x, iff px v py for all
continuous p : X → Ω (where Ω is ordered by 0 v 1). When speaking of lower sets, lower
bounds, upper sets etc. in a convergence space, we always refer to the induced preorder. As
usual, the symbol ‘↓’ will be used as a prefix operator for principal ideals ↓a = {x | x v a}
and lower closure ↓A =

⋃
a∈A ↓a. It will always be clear from the context whether ‘↓’ is used

in this way or to denote a convergence relation.

Continuous functions are monotonic in the induced preorders. Therefore, x v x′ in an initial
space X w.r.t. (fi : X → Yi)i∈I implies fix v fix

′ for all i in I, and f v g in [X → Y ] implies
fx v gx for all x in X. In both cases, the converse does not hold in general. Example 3.1
presents a situation where a subspace preorder (discrete) is different from the restriction of
the preorder of the whole space to the subset (indiscrete).

In any space, [y] ↓ x implies x v y, but the converse does not hold in general. For instance,
in the space Y = {−1, 0, 1} of Example 3.1, the induced topology is indiscrete, and so the
induced preorder is Y × Y . In particular, −1 v 1 holds, but [1] ↓ −1 does not hold.

In Section 4, we shall introduce some classes of convergence spaces which avoid the above-
mentioned problems.

3.7 T0 and T1

A convergence space is T0 iff x v y and y v x together imply x = y (anti-symmetry of the
induced preorder), and T1 iff x v y implies x = y (the induced preorder is equality). Clearly,
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these are properties of the induced topology. Therefore, they are equivalent to the well-known
topological notions for topological convergence spaces.

If (fi : X → Yi)i∈I is a point-separating family of continuous functions and all spaces Yi are
T0 (T1), then so is X. Here point-separating means that fix = fix

′ for all i implies x = x′.
This includes products and subspaces, but also function spaces because of (λf. fx : [X → Y ]
→ Y )x∈X (it is not required that X carries the initial structure w.r.t. the family). Thus the
separation properties T0 and T1 carry over from Y to [X → Y ], for arbitrary X.

4 Niceness Properties

There are quite pathological convergence spaces around, for instance space Y of Example 3.1
whose convergence structure induces the indiscrete topology, but admits non-trivial discrete
subspaces. Such pathologies can be ruled out by imposing further conditions on the conver-
gence structure, which we shall call niceness properties (one could also say additional axioms
on top of the existing two). Of course, these niceness properties should not destroy any-
thing of what has been outlined above. Therefore, we define that a property N is a niceness
property if the following holds:

(1) Every topological convergence space satisfies N .

(2) Property N is preserved by initial constructions (and thus by products, subspaces, and
in particular equalisers).

(3) Property N is preserved by exponentiation, i.e., if Y has the property, then [X → Y ] has
it as well, no matter whether X satisfies the property or not.

4.1 Merge-Niceness

Recall the subfilter axiom saying that if A ↓ x and A′ ≤i A, then A′ ↓ x holds as well.
Merge-niceness provides a step in the opposite direction:

• If A ↓ x and B ↓ x, then A ∨ B ↓ x (i.e., A ∩ B ↓ x).

As usual, ‘∨’ refers to the “inner view” ΦiX = (ΦX,≤i).

In topological spaces, A ↓ x iff A ≤i N (x), and so merge-niceness is certainly satisfied; even
its infinite version holds.

Let X be initial for (fi : X → Yi)i∈I where all Yi are merge-nice. If A,B ↓ x in X, then
f+

i A, f+
i B ↓ fix for all i, whence f+

i (A ∨ B) = f+
i A ∨ f+

i B ↓ fix, which gives A ∨ B ↓ x by
initiality. This argument would be valid for infinite joins as well.

Let Y be merge-nice and F1,F2 ↓ f in [X → Y ]. Then for all A ↓ x, F1 · A ↓ fx and
F2 · A ↓ fx, whence by merge-niceness F1 · A ∨ F2 · A ↓ fx. This filter is the same as
(F1 ∨ F2) · A, and so we are done. This argument does not carry over to infinite joins.
Remember F ·A = E+(F ×A) where E is evaluation. Unlike the set version of ‘×’, the filter
version does not distribute over infinite joins in general.
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Merge-nice convergence spaces are sometimes called limit spaces [18, 14]. Some authors
include merge-niceness into the definition of the spaces they consider, but it is not needed
to obtain a cartesian closed category. For the topic of the paper at hand, it is of minor
importance, and worse, many of the “cotopological” convergence spaces considered later do
not satisfy it. Merge-niceness on its own does not rule out the pathologies concerned with
subspace topology and preorder; for, space Y in Example 3.1 is merge-nice because of the
very way its convergence structure has been defined. On the other hand, merge-niceness is
needed for the inclusion into Scott’s category EQU of equilogical spaces [16, 1] which works
smoothly only for merge-nice convergence spaces (see [7] where convergence spaces are called
filter spaces).

4.2 Up-Niceness

The induced preorder of a convergence space X gives the usual up-closure ↑A for subsets A

of X. This up-closure can be extended to filters by defining ↑A = [↑A | A ∈ A]. Note that in
ΦiX, we have A ≤i ↑A as it is familiar from sets, ‘↑’ is monotonic, and ↑↑A is the same as
↑A.

Then up-niceness is the following property:

• If A ↓ x, then also ↑A ↓ x.

A topological space is up-nice since ↑N (x) = N (x), and so, A ≤i N (x) iff ↑A ≤i N (x). Up-
niceness is preserved by initial constructions and function space, as required for a niceness
property. For initial constructions, one needs the property f+

i (↑A) ≤i ↑f+
i A which holds due

to monotonicity of fi. For function space, one needs (↑F) ·A ≤i ↑(F ·A) which holds because
the corresponding property for sets holds, and ultimately, since g w f implies ga w fa for
all a.

In up-nice convergence spaces, the limit points of principal filters can be completely charac-
terised:

Proposition 4.1
Let X be an up-nice space, and A ⊆ X. Then [A] ↓ x iff x is a lower bound of A.

Proof: For every a in A, [a] ≤i [A] holds. Hence, [A] ↓ x implies [a] ↓ x for all a in A by
the subfilter axiom, and thus x is a lower bound of A. Conversely, if x is a lower bound of A,
then A ⊆ ↑x, whence [A] ≤i [↑x] = ↑[x], and the latter converges to x because of up-niceness
and the point filter axiom. 2

Hence, finite up-nice spaces are topological. (All filters are principal, and [A] ↓ x iff [A] ≤i

[↑x] = N (x), the neighbourhood filter in the Alexandroff topology.)

From the above characterisation of the limits of principal filters, [y] ↓ x ⇐⇒ x v y follows.
This property suffices to conclude that the induced preorder of initial up-nice spaces is well-
behaved: x v x′ implies fix v fix

′ for all i, which gives f+
i [x′] = [fix

′] ↓ fix, and thus [x′] ↓ x

by initiality, which finally implies x v x′ showing that all these statements are equivalent.
Therefore, the preorder of products of up-nice spaces is componentwise, and the preorder of
a subspace of an up-nice space is obtained by restriction.
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Moreover, up-niceness implies that the preorder in function spaces is pointwise: If fx v gx

for all x, then g+A ⊆ ↑f+A holds for all subsets, which carries over to filters. Using this
relation, [g] ↓ f can be proved: if A ↓ x, then [g] · A = g+A ↓ fx because g+A ≤i ↑f+A and
↑f+A ↓ fx by continuity of f and up-niceness.

4.3 Down-Niceness

While the previous properties dealt with the filters converging to a fixed point, the properties
that follow are statements about the set of limit points of a fixed filter. Down-niceness states
that it is a lower set:

• If A ↓ y and y w x, then A ↓ x.

By definition, y w x meansN (x) ⊆ N (y), orN (y) ≤i N (x), whereN (x) is the neighbourhood
filter of x. From this, it is immediate that topological spaces are down-nice. For initial
constructions, A ↓ y w x implies f+

i A ↓ fiy w fix for all i, whence f+
i A ↓ fix for all i, and

thus A ↓ x. If F ↓ f w g in a function space, then F · A ↓ fx w gx for all A ↓ x, whence
F · A ↓ gx for all A ↓ x, and thus F ↓ g.

In presence of down-niceness, the following three statements are equivalent:

(1) x v y; (2) [y] ↓ x; (3) for all filters A, A ↓ y implies A ↓ x.

Here, (1) ⇒ (3) is down-niceness, while (3) ⇒ (2) and (2) ⇒ (1) always hold. From
the equivalence of (1) and (2), it follows as in up-nice spaces that the preorder in initial
constructions is well-behaved, i.e., x v x′ iff fix v fix

′ for all i. Furthermore, the preorder
is pointwise in function spaces: If F ↓ f in a function space and fx w gx for all x, then
F·A ↓ fx w gx for allA ↓ x, whence F ↓ g follows. By the stated equivalences, F ↓ f ⇒ F ↓ g

means f w g.

4.4 Order Niceness

A convergence space is order-nice if it is both up-nice and down-nice.

4.5 Closure Niceness

Down-niceness is equivalent to the property that for every filterA, the set LimA = {x | A ↓ x}
of limit points is a lower set. An obvious strengthening is the following (closure niceness):

• For every filter A, the set LimA of limit points is closed (in the induced topology).

To show that topological spaces are closure-nice, let x be in cl (LimA). Then each open set
containing x also contains a limit point of A, and hence is in A. This shows A ≤i N (x),
and thus A ↓ x. For initial structures, LimA is

⋂
i∈I f−i (Lim (f+

i A)), and for function
spaces, LimF =

⋂
A↓x(@x)−(Lim (F · A)). These are closed sets since the functions fi and

@x = λf. fx are continuous (in CONV and therefore in the induced topologies).
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5 d-Spaces and Join Spaces

A topological space is a d-space [19, 4] (monotone convergence space in [5]) if its specialisation
preorder forms a dcpo, and all open sets are Scott open; or equivalently, if every directed set
of points has a least upper bound which is also a limit point of the set. Clearly, this notion
captures essential topological properties of dcpos, and for any dcpo D, the Scott topology is
the strongest topology which yields a d-space whose induced dcpo is D.

Below, we extend the notion of d-space to CONV in such a way that its restriction to TOP
yields the original notion. The cotopological convergence structure on a dcpo D will be the
strongest d-space structure whose induced dcpo is D. Hence, all properties of general d-spaces
will be inherited by cotopological dcpos.

Join spaces are to complete lattices what d-spaces are to dcpos. They have some additional
properties which are inherited by all cotopological complete lattices.

5.1 d-Spaces

Actually, there are several different ways to generalise the topological notion of d-spaces to
CONV. Our choice gives good properties, in particular closure under exponentiation.

An order-nice convergence space is a d-space if the induced preorder is a dcpo (this includes
anti-symmetry), and all limit sets LimA are closed under directed joins. (Here, “order-
nice” may be relaxed to “up-nice”, if “closed under directed joins” is strengthened to “Scott
closed”.) All finite up-nice T0 spaces are d-spaces, and all T1 spaces are d-spaces.

To derive properties of d-spaces, the following definition is useful: For a directed set ∆ in a
poset D, let 〈∆〉 = [↑d | d ∈ ∆].

Lemma 5.1

(1) In any T0 convergence space: If x is an upper bound of ∆ and 〈∆〉 ↓ x, then x =
⊔

∆.

(2) In a d-space, 〈∆〉 ↓
⊔

∆ holds, and hence the implication in (1) becomes an equiva-
lence.

Proof:

(1) Assume 〈∆〉 ↓ x and let u be an upper bound of ∆. This means u ∈ ↑d for all d in ∆,
whence [u] ≤i 〈∆〉. Thus, 〈∆〉 ↓ x implies [u] ↓ x, whence x v u.

(2) For every d in ∆, 〈∆〉 ≤i [↑d] = ↑[d]. By up-niceness, ↑[d] ↓ d, and so 〈∆〉 ↓ d. Hence, ∆
is a subset of Lim 〈∆〉, whence 〈∆〉 ↓

⊔
∆ by the d-space property. 2

Proposition 5.2 Let X be a d-space, Y an up-nice T0-space, and f : X → Y a continuous
function. Then for all directed sets ∆ ⊆ X, f(

⊔
∆) =

⊔
f+∆ holds.

Proof: As a continuous function, f is monotonic, and therefore, f+∆ is directed again.
By Lemma 5.1 (2), x =

⊔
∆ is an upper bound of ∆, and 〈∆〉 ↓ x holds. By monotonicity,

fx is an upper bound of f+∆, and continuity of f and up-niceness of Y together imply
↑f+〈∆〉 ↓ fx. Now, ↑f+〈∆〉 = [↑f+(↑d) | d ∈ ∆] = [↑fd | d ∈ ∆] = 〈f+∆〉, which gives
〈f+∆〉 ↓ fx. By Lemma 5.1 (1), fx =

⊔
f+∆ follows. 2
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Corollary 5.3 All continuous functions between d-spaces are Scott continuous.

Using the d-space Ω and the equivalence between open sets and continuous functions to Ω,
we obtain:

Corollary 5.4
In a d-space, all open sets are Scott open, and all closed sets are Scott closed.

This property characterises the d-spaces among up-nice closure-nice spaces: if all closed sets
are Scott closed, then in particular LimA is Scott closed. Thus, a topological space is a
d-space iff its specialisation preorder forms a dcpo and all open sets are Scott open—exactly
the topological d-space notion.

Theorem 5.5 Products of d-spaces are d-spaces again.

Proof: Up-niceness guarantees that the induced preorder of the product X =
∏

i∈I Xi is
the product ordering. By order theory, X is a dcpo in this order. If A ↓ d for all d in a
directed set ∆, then Ai ↓ di for all i (where Ai abbreviates π+

i A), whence Ai ↓ xi where
xi =

⊔
d∈∆ di, and finally A ↓ (xi)i∈I =

⊔
∆. 2

Proposition 5.6
Subspaces of a d-space that are closed under directed joins are d-spaces again.

Proof: Let X be a subset of the d-space Y , closed under directed joins, and let e : X → Y

be the subspace embedding. If A ↓ d for all d in a directed subset ∆ of X, then e+A ↓ ed,
whence e+A ↓

⊔
e+∆ by the d-space property of Y . Since X is closed under directed joins,⊔

e+∆ equals e(
⊔

∆), and thus A ↓
⊔

∆ as required. 2

Theorem 5.7 If X is a d-space and Y an up-nice T0 space, then equalisers of continuous
f, g : X → Y are d-spaces again.

Proof: Let ∆ be a directed set in the equaliser. By Prop. 5.2, f(
⊔

∆) =
⊔

f+∆ =
⊔

g+∆ =
g(

⊔
∆) holds, and thus

⊔
∆ is in the equaliser again. Therefore, the equaliser is closed under

directed joins, and hence a d-space again by Prop. 5.6. 2

Proposition 5.8 If ∆ is a directed set of continuous functions from an arbitrary space X

to a d-space Y , then the function g = (x 7→
⊔

f∈∆ fx) is well-defined, continuous, and the
join of ∆ in [X → Y ].

Proof: The joins in the definition of g are directed, so g is a well-defined function. By
up-niceness, the order of the function space is pointwise, and so, g obviously is the join of ∆,
provided that it is continuous. For continuity, consider A ↓ x, whence ↑f+A ↓ fx for all f

in ∆ by continuity and up-niceness. For all such f , f v g holds, whence g+A ⊆ ↑f+A for
A ∈ A, and accordingly, g+A ≤i ↑f+A. Therefore, we have g+A ↓ fx for all f in ∆, whence
g+A ↓ gx by the d-space property of Y . 2

Theorem 5.9 If Y is a d-space, then [X → Y ] is a d-space for any X.

Proof: By Prop. 5.8, [X → Y ] is a dcpo with pointwise directed joins. If F ↓ f for
all f in a directed set ∆, then for all A ↓ x, F · A ↓ fx holds for all f in ∆, whence
F · A ↓

⊔
F∈∆ fx = (

⊔
∆)(x) by the d-space property of Y and Prop. 5.8. 2
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5.2 Join Spaces

We now specialise d-spaces to complete lattices. Before we come to the definition, we start
with a lemma about binary joins. Let’s say A is an upper filter if ↑A = A, i.e., A is generated
by a filter base of upper sets.

Lemma 5.10 Let P be a poset, where binary joins x ∨ y exist for all x, y in P . Then for
all upper sets B and C, ∨+(B × C) = B ∩ C holds, and similarly for upper filters B and
C, we have ∨+(B × C) = B ∧ C.

Proof: The set statement is straightforward, and the filter statement follows from it since
both sides may be written in terms of the upper sets in appropriate filter bases. 2

Theorem 5.11 For an order-nice convergence space X, the following are equivalent:

(1) X is a d-space with a least element 0 and a continuous binary join operator ∨ :
X ×X → X.

(2) The induced preorder of X is a complete lattice, and the limit sets LimA are closed
under arbitrary joins.

(3) For every filter A, there is a unique point a such that LimA = ↓a.

Such spaces are called join spaces.

Proof: Clearly, a space as in (1) is a complete lattice. By the d-space property, the limit
sets are closed under directed joins. They are closed under the empty join, i.e., contain 0,
since for each filter A, A ≤i [X] = ↑[0] holds, and ↑[0] ↓ 0 by up-niceness. For closure
under binary join, assume A ↓ x1, x2, whence ↑A ↓ x1, x2 by up-niceness, and therefore
↑A = ↑A ∧ ↑A = ∨+(↑A × ↑A) ↓ x1 ∨ x2 by continuity of ‘∨’, whence A ↓ x1 ∨ x2. Closure
under directed joins, binary joins, and empty join implies closure under all joins by a standard
argument.

From (2) and down-niceness, (3) is obvious. For the opposite direction, one has to show that
(3) is sufficient to conclude that X is a complete lattice. For any A ⊆ X, Lim[A] is the set of
lower bounds of A by up-niceness and Prop. 4.1. Property (3) thus gives the greatest lower
bound of A.

For (2)⇒ (1), assume X is a space as in (2). Then clearly X is a d-space with a least element
and binary joins. The only thing to show is continuity of ‘∨’. If A1 ↓ x1 and A2 ↓ x2, then
↑A1 ∧ ↑A2 ↓ x1, x2 by up-niceness and the subfilter axiom, and so ∨+(↑A1 × ↑A2) ↓ x1 ∨ x2

by Lemma 5.10. Clearly, ∨+(A1×A2) ≤i ∨+(↑A1×↑A2) holds, which concludes the proof.2

Theorem 5.12 Products of join spaces are join spaces again.

Proof: The product X =
∏

i∈I Xi is a d-space by Theorem 5.5. Its least element is (0i)i∈I

where 0i is the least element of Xi. Binary join is componentwise; its continuity can be shown
using the universal property of products. 2

Theorem 5.13 If Y is a join space, then so is [X → Y ] for any X. Joins in [X → Y ] are
pointwise: (

∨
i∈I fi)(x) =

∨
i∈I(fix).
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Proof: By Theorem 5.9, [X → Y ] is a d-space, and by Prop. 5.8, directed joins are
pointwise. The empty join is the constant function λx. 0Y , and binary join is given by
f ∨ g = λx. fx ∨ gx. This is continuous since it is given by a λ-expression. 2

The class of d-spaces is closed under equalisers. This does not hold for join spaces, but at
least we have:

Proposition 5.14 Retracts of join spaces are again join spaces.

Proof: Let e : X → Y and r : Y → X be continuous functions with r ◦ e = idX . Assuming
that Y is a join space, we must show that X is a join space. First, X is a d-space by
Theorem 5.7 since it is (via e) the equaliser of e ◦ r : Y → Y and idY . For all x in X, 0Y v ex

holds, and thus r0Y v r(ex) = x; this gives the least element of X. Binary joins in X are
given by x1 ∨ x2 = r(ex1 ∨ ex2); this function is continuous since r, e, and join in Y are
continuous. 2

6 d-Space Structures

Given a dcpo D = (D,v), there are in general several different convergence structures on
the set D which define a d-space whose induced preorder is ‘v’. These structures are called
d-space structures for (D,v).

6.1 The Topological Structure

A topological structure on D with induced preorder ‘v’ is a d-space structure for D if and
only if every open set is Scott open. Hence, the Scott topology defines the strongest topological
d-space structure for D. This structure is denoted by ‘↓s’, and the resulting d-space (D, ↓s)
by Ds. In a sloppy way, we call ‘↓s’ the topological structure of D.

If the given dcpo happens to be a complete lattice L, then Ls is a d-space with least element
and binary join. Unfortunately, it is not always a join space, because ∨ : Ls ×Ls → Ls is not
always continuous. For, the Compendium [5, Cor. II-1.12] contains a result that Ls is sober
if ‘∨’ is continuous in Ls, but Isbell has found a complete lattice L where Ls is not sober [13].

6.2 The Strongest d-Space Structure

Now we look for the strongest d-space structure of all, which is strictly stronger than ‘↓s’ in
general. A hint what this strongest structure might look like is given by the following fact:

Proposition 6.1 For every d-space X and filter A in X, LimA ⊇ cl (
⋃

A∈A A↓) holds,
where ‘cl’ is closure in the Scott topology and A↓ is the set of lower bounds of A.

Proof: As a d-space, X is up-nice, and so Lim[A] = A↓ holds for all A ⊆ X by Prop. 4.1.
For any A in A, A ≤i [A], whence A↓ = Lim[A] ⊆ LimA by the subfilter axiom. Thus,⋃

A∈A A↓ ⊆ LimA. Scott closure ‘cl’ can be added to the union since in a d-space all limit
sets LimA are Scott closed. 2
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The above proposition suggests that the strongest d-space structure is given by LimA =
cl (

⋃
A∈A A↓). Indeed, this conjecture is true, and unlike the Scott topology, this definition

even yields a join space if the given dcpo happens to be a complete lattice. These and other
properties are shown in the sequel.

Definition 6.2 For every dcpo D, let ‘↓c’ be the convergence structure defined by A ↓c x

iff x ∈ cl (
⋃

A∈A A↓) where ‘cl’ is closure in the Scott topology and A↓ is the set of lower
bounds of A. This structure is called the cotopological structure of D, and Dc = (D, ↓c)
is called a cotopological dcpo.

The term “cotopological” refers to the behaviour in the function space construction (see
Theorem 7.11 and Cor. 7.21, or Section 7.6).

Let’s prove that ‘↓c’ is the strongest d-space structure for D. First, we show that it is a
convergence structure at all. If A′ ≤i A, then A ⊆ A′, and thus cl (

⋃
A∈A A↓) ⊆ cl (

⋃
A∈A′ A↓),

which proves that the subfilter axiom is satisfied. The convergence [x] ↓c x holds since
cl (

⋃
A∈[x] A

↓) = cl {x}↓ = ↓x.

Second, we show that the induced preorder ‘vc’ of Dc is the order ‘v’ of the given dcpo
D. The calculation at the end of the previous paragraph shows Lim[x] = ↓x. Hence, y v x

implies [x] ↓c y, whence y vc x. For the opposite implication, we note that the identity
Dc → Ds is continuous by Prop. 6.1. Since continuous functions are monotonic, and ‘v’ is
the specialisation preorder of Ds, y vc x implies y v x.

Third, we show that Dc is a d-space. It is up-nice since A↓ = (↑A)↓, and hence, A ↓c x and
↑A ↓c x are equivalent. It is down-nice and a d-space structure since the limit sets LimA are
Scott closed by definition. By Prop. 6.1, it is the strongest d-space structure for D.

We also show that the induced topology of Dc is the Scott topology. Since Dc is a d-space,
every open set of Dc is Scott open by Cor. 5.4. By Prop. 6.1, the identity Dc → Ds is
continuous, hence topologically continuous, and therefore, every Scott open set is open in Dc.

Finally, we note that every limit set LimA is Scott closed by definition, hence closed in the
induced topology. This gives closure-niceness. Summarising, we have shown:

Theorem 6.3 For every dcpo D, ‘↓c’ is the strongest d-space structure for D. The space
Dc = (D, ↓c) is a closure-nice d-space, whose induced topology is the Scott topology of D.

We now present one of the simplest examples for Lc 6= Ls. Let L be the complete lattice
which consists of a least element ⊥, a greatest element >, and two chains a1 ≤ a2 ≤ · · · and
b1 ≤ b2 ≤ · · · which have the same join >, but are otherwise unrelated. In Ls, the filter
F = [↑{an, bn} | n ≥ 1] converges to > (and to any other point as well) since every non-empty
Scott open set contains an and bn for some n. In Lc however, F does not converge to > since
⊥ is the only lower bound of ↑{an, bn}, and so, LimcF = {⊥}.
The same example shows that cotopological dcpos are not always merge-nice. In Lc, the two
filters A = [↑an | n ≥ 0] and B = [↑bn | n ≥ 0] converge to > (direct from the definition, or
from Lemma 5.1 (2)), but A ∨ B = F does not converge to >.
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6.3 Alternative Characterisations of ‘↓c’

The definition of ‘↓c’ in terms of Scott closure and lower bound operator (−)↓ can be rephrased
in several equivalent ways:

Proposition 6.4 x ∈ cl (
⋃

A∈A A↓)
iff each Scott open neighbourhood O of x meets A↓ for some A in A
iff for each Scott open neighbourhood O of x, there are x′ ∈ O and A ∈ A with A ⊆ ↑x′

iff for each Scott open neighbourhood O of x, there is x′ ∈ O such that ↑x′ ∈ A.

Here, the last formulation turns out to be the most useful in proofs. When we refer to
Prop. 6.4, we always mean this last one.

The main weakness of Def. 6.2 and Prop. 6.4 is their reference to the Scott topology which
is hard to characterise for arbitrary dcpos. Fortunately, there is a purely order-theoretic
characterisation in case of complete lattices:

Proposition 6.5 In a complete lattice, A ↓c x iff x ≤
∨

A∈A
∧

A. This join is directed.

Proof: For every A in A, A↓ = ↓
∧

A ⊆ ↓
∨

A∈A
∧

A and so cl (
⋃

A∈A A↓) ⊆ ↓
∨

A∈A
∧

A.
Conversely, if x ≤

∨
A∈A

∧
A, then every Scott open neighbourhood of x contains

∧
A for

some A in A. Since
∧

A ∈ A↓, Prop. 6.4 applies. 2

Thus, LimA has the form ↓a where a =
∨

A∈A
∧

A. This matches the third part of the
defining theorem for join spaces (Theorem 5.11).

Corollary 6.6 If L is a complete lattice, then Lc is a join space; in particular, ∨ : Lc×Lc →
Lc is continuous.

This property distinguishes Lc from Ls; for, ∨ : Ls × Ls → Ls is not always continuous (see
Section 6.1 and the introduction).

For complete lattices, the order-theoretic convergence relation of Prop. 6.5 has been consid-
ered earlier. In the Compendium [5, II 1.1–1.8], the analogous relation for nets was taken
as a motivation of the Scott topology which arises as the induced topology. In [17, 3], the
convergence relation (for filters) was called “Scott convergence” (although it is not conver-
gence in the Scott topology in general, cf. Theorem 7.3 below). In these papers, the “Scott
convergence” was generalised from complete lattices to all posets in several different ways,
which are all different from our definition of ‘↓c’.

7 Cotopological Dcpos

7.1 Basic Properties of Cotopological Dcpos

We have already seen that the induced topology of a cotopological dcpo is the Scott topology.
A similar property holds for functions.

Theorem 7.1 Let D and E be dcpos and f : D → E a function. Then f : Dc → Ec is
continuous, iff f : D → E is Scott continuous, iff f : Ds → Es is continuous.
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Proof: By Cor. 5.3, every continuous function between the d-spaces Dc and Ec is Scott
continuous. Conversely, let f : D → E be Scott continuous, and A ↓c x in D. If V is a
Scott open neighbourhood of fx, then f−V is a Scott open neighbourhood of x, whence there
is x′ ∈ f−V with ↑x′ ∈ A. This gives fx′ ∈ V with ↑fx′ ⊇ f+(↑x′) ∈ f+A. Therefore
f+A ↓c fx as required.

The second equivalence is well-known. 2

Corollary 7.2 (−)c and (−)s are full and faithful embeddings of DCPO into CONV.

Thus, Dc and Ds cannot be distinguished by the induced topology, nor by continuity of
functions (of one argument, but recall that ∨ : Lc × Lc → Lc is always continuous, while
∨ : Ls×Ls → Ls is sometimes not continuous). The question of when Dc and Ds are identical
is settled by the following equivalences:

Theorem 7.3 Let D be a dcpo. Dc is topological, iff Dc = Ds, iff D is continuous.

Proof: Since the induced topology of Dc is the Scott topology, Dc can only be topological
if it equals Ds. Assume Dc = Ds. Then N (x) ↓c x, and so, for each Scott open U 3 x, there
is y ∈ U such that ↑y ∈ N (x), i.e., there is a Scott open V such that x ∈ V ⊆ ↑y ⊆ U . This
“local supercompactness property” characterises continuous dcpos topologically. Conversely,
if D is continuous, “local supercompactness” proves N (x) ↓c x, and so A ↓s x⇒ A ≤i N (x)
⇒ A ↓c x, whence Dc = Ds. 2

We already know that all cotopological dcpos Dc are up-nice, down-nice, and closure-nice.
Now we consider merge-niceness in the case of dcpos with binary meets.

Theorem 7.4 Let D be a dcpo with binary meets ‘u’. Then Dc is merge-nice iff u :
D ×D → D is Scott continuous.

Proof: If meet is Scott continuous, then ma = λb. a u b : D → D is Scott continuous for
every a in D. Assume A ↓c x and B ↓c x. To prove A∩B ↓c x, we apply Prop. 6.4. Thus, let
x be in a Scott open set O. By Scott continuity of mx, U = m−

x O is Scott open as well, and
contains x since x u x = x ∈ O. Because of A ↓c x ∈ U , there is a in U with ↑a ∈ A. Since a

is in U = m−
x O, au x is in O, and therefore, V = m−

a O is another Scott open neighbourhood
of x. Because of B ↓c x ∈ V , there is b in V with ↑b ∈ B. Then c = a u b is in O, and ↑c as a
superset of both ↑a and ↑b is in A ∩ B. This concludes the proof of A ∩ B ↓c x.

Conversely, assume merge-niceness, and consider a in D and a directed set ∆. Let b = au
⊔

∆
and c =

⊔
d∈∆(a u d). The relation b w c always holds. We have [a] ↓c b since b v a, and

〈∆〉 ↓c b by b v
⊔

∆ and Lemma 5.1. By merge-niceness, [a] ∩ 〈∆〉 ↓c b follows. The sets
C in [a] ∩ 〈∆〉 contain a and ↑d for some d in ∆. Thus, C↓ ⊆ ↓(a u d) ⊆ ↓c holds, whence
cl (

⋃
C∈[a]∩〈∆〉 C

↓) ⊆ ↓c follows, and so b, as a limit point of [a] ∩ 〈∆〉, is in ↓c as well. 2

While the above theorem is kind of bad news concerning the niceness of cotopological lattices,
it gives at least a new proof of an old theorem: in a continuous dcpo with binary meets, the
cotopological structure is merge-nice because it coincides with the topological structure, and
therefore, meet is Scott continuous.
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7.2 Products of Cotopological Dcpos

Given a family (Di)i∈I of dcpos, we want to compare (
∏

i∈I Di)c and
∏

i∈I(Di)c.

Proposition 7.5 The identity function (
∏

i∈I Di)c →
∏

i∈I(Di)c is continuous.

Proof: The projections
∏

i∈I Di → Di are Scott continuous, hence continuous (
∏

i∈I Di)c →
(Di)c. 2

For complete lattices, the opposite direction is easily obtained:

Theorem 7.6 For any family (Li)i∈I of complete lattices, (
∏

i∈I Li)c =
∏

i∈I(Li)c holds.

Proof: If A ↓ x in
∏

i∈I(Li)c, then π+
i A ↓c xi, i.e., xi ≤

∨
A∈A

∧
π+

i A for all i in I. Since
projections preserve all joins and meets, we get xi ≤ πi(

∨
A∈A

∧
A) for all i in I, whence

A ↓c x. 2

On the positive side, we have in particular (L × L)c = Lc × Lc. This shows once again
that ∨ : Lc × Lc → Lc is continuous (because it is Scott continuous). On the other hand,
∨ : Ls×Ls → Ls is not always continuous. This gives an example where the induced topology
of the product is not the product of the induced topologies. For, the induced topology of
Lc×Lc = (L×L)c is the Scott topology, while Lc with the induced topology is Ls, and if the
product topology of Ls×Ls were the Scott topology as well, then ∨ : Ls×Ls → Ls would be
Scott continuous.

Theorem 7.6 cannot be fully generalised to dcpos. Consider for instance the family (Di)i∈I

where I is infinite and all Di are equal to the discrete two-point dcpo D. Then (Dc)I = (Ds)I

since D is algebraic, and thus (Dc)I is topological with a non-discrete topology. Yet the
induced topology of (DI)c is the Scott topology, which is discrete. Therefore, (DI)c 6= (Dc)I .

Finite products are okay:

Theorem 7.7 For two dcpos D and E, (D × E)c = Dc × Ec holds.

Proof: Let C ↓ (a, b) in Dc × Ec, i.e., A ↓c a and B ↓c b where A = π+
1 C and B = π+

2 C.
We have to show C ↓c (a, b), so let W be a Scott open neighbourhood of (a, b). Note that W

is not necessarily open in the product topology; therefore the “usual” way to proceed is not
possible.

Let U = {x ∈ D | (x, b) ∈ W}. This is a Scott open neighbourhood of a since the
function λx. (x, b) is Scott continuous. Because of A ↓c a, there is a′ in U with ↑a′ ∈ A,
or A ≤i [↑a′]. Since a′ is in U , (a′, b) is in W . Now, we do the same the other way round:
let V = {y ∈ E | (a′, y) ∈ W}. By B ↓c b, there is b′ in V with B ≤i [↑b′]. Then we have
(a′, b′) ∈W and C ≤i A× B ≤i [↑a′]× [↑b′] = [↑(a′, b′)], i.e., ↑(a′, b′) ∈ C. 2

Even infinite products are okay if almost all dcpos are pointed (which was not true in the
counterexample above). This result subsumes Theorem 7.6, but the proof is much more
involved.

Theorem 7.8 Let (Di)i∈I be a family of dcpos with the property that almost all Di have
a least element ⊥i. Then (

∏
i∈I Di)c =

∏
i∈I(Di)c holds.
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Proof: We have to show that the identity function id :
∏

i∈I(Di)c → (
∏

i∈I Di)c is contin-
uous. Let B ⊆fin I be the set of indices of the non-pointed dcpos. For every finite subset
J of I with J ⊇ B, the projection function pJ :

∏
i∈I(Di)c →

∏
j∈J(Dj)c is continuous. By

Theorem 7.7,
∏

j∈J(Dj)c is the same as (
∏

j∈J Dj)c. Let eJ :
∏

j∈J Dj →
∏

i∈I Di be the
function defined by

(eJx)i =

{
xi if i ∈ J

⊥i otherwise.

This function is Scott continuous, and hence continuous (
∏

j∈J Dj)c → (
∏

i∈I Di)c by The-
orem 7.1. Together, we have a continuous function fJ = eJ ◦ pJ :

∏
i∈I(Di)c → (

∏
i∈I Di)c,

which leaves the components in J unchanged and maps all other components xi to ⊥i. The
family (fJ)J where J ranges over the finite subsets of I that contain B is a directed family
of continuous functions with join id. By Prop. 5.8, id is continuous. 2

Again, this gives a new proof of an old theorem: if (Di)i∈I is a family of continuous dcpos
where almost all are pointed, then (

∏
i∈I Di)c =

∏
i∈I(Di)c =

∏
i∈I(Di)s is topological, and

thus
∏

i∈I Di is continuous again.

7.3 Function Spaces from Topological to Cotopological

Now, we consider the situation where X is topological and Y = Dc is a cotopological dcpo.
From Theorem 5.9, we know that [X → Dc] is a d-space. Hence, the continuous functions
from X to Dc form a dcpo (X → Dc), and the identity (X → Dc)c → [X → Dc] is continuous
since ‘↓c’ is the strongest d-space structure for (X → Dc).

For the opposite direction, one cannot hope for much. We have already seen a counterexample
in Section 7.2 where X is an infinite discrete space and D is the discrete two-point dcpo. The
product experience suggests to require D to be pointed. But even this is not enough, since
any positive result would imply a similar result for continuous dcpos (the exact argument
will be presented in Section 7.6), but it is well-known that the function space of two pointed
continuous dcpos is not continuous in general.

However, we are able to show a result for complete lattices L. Before we come to this,
we consider how continuous functions X → Dc are characterised. As all CONV-continuous
functions, they are also TOP-continuous, i.e., each continuous function X → Dc is also
continuous X → Ds. The converse does not hold in general; consider for instance the identity
Ds → Ds in case Dc 6= Ds.

A function f : X → Dc is continuous, iff A ↓ x implies f+A ↓c fx, iff f+N (x) ↓c fx for all x

in X. The latter means that for every Scott open neighbourhood V of fx, there are y in V

and an open neighbourhood U of x such that f+U ⊆ ↑y ⊆ V . (Topological continuity would
be similar, but without ‘↑y’ in between.)

If D is a complete lattice, the condition f+N (x) ↓c fx for all x in X means fx ≤∨
U∈N (x)

∧
f+U by Prop. 6.5. Here, ‘≤’ may be replaced by ‘=’ since ‘≥’ always holds.

Summarising, we have:
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Proposition 7.9

(1) Let X be a topological space and D a dcpo. A function f : X → Dc is continuous iff for
every Scott open neighbourhood V of fx, there are y in V and an open neighbourhood
U of x such that f+U ⊆ ↑y ⊆ V .

(2) If D is moreover a complete lattice, this is equivalent to fx =
∨

U∈N (x)

∧
f+U for all

x in X (the relation that matters is ‘≤’).

Proposition 7.10 Let X be a topological space and L a complete lattice. Then [X → Lc]
is a complete lattice again where joins are pointwise and meets are given by (

∧
F )(x) =∨

U∈N (x)

∧
(F · U).

Proof: By Theorem 5.13, [X → Lc] is a join space, and joins are given pointwise. For
meets, let g = (x 7→

∨
U∈N (x)

∧
(F · U)). First, g is continuous by Prop. 7.9 (1) since

for Scott open V 3 gx, there is U in N (x) such that
∧

(F · U) ∈ V . For each u in U ,∧
(F · U) ≤ gu holds, whence g+U ⊆ ↑

∧
(F · U). Second, g is a lower bound of F since

for all f in F , x in X and U ∈ N (x),
∧

(F · U) ≤ fx, whence gx ≤ fx. Finally, g is
the greatest lower bound since for all continuous lower bounds h of F , Prop. 7.9 (2) gives
hx =

∨
U∈N (x)

∧
h+U ≤

∨
U∈N (x)

∧
(F · U) = gx. 2

Using these results, we may now show:

Theorem 7.11 If X is topological and L a complete lattice, then [X → Lc] is a complete
lattice again, and the function space structure coincides with the cotopological structure.

Proof: We have to show that F ↓ g implies F ↓c g, which means g ≤
∨

F∈F
∧

F . For each
x in X, we have N (x) ↓ x, and thus F · N (x) ↓c gx, i.e., gx ≤

∨
F∈F

∨
U∈N (x)

∧
(F · U). By

the characterisation of meets, the latter equals
∨

F∈F (
∧

F )(x). Since join is pointwise, this is
(
∨

F∈F
∧

F )(x). This shows g ≤
∨

F∈F
∧

F as required. 2

One may try to extend this result from complete lattices to a more general class of dcpos.
Bounded-complete dcpos are good candidates, and one may consider analogues of L-domains
or SFP domains.

7.4 An Injectivity Result

In a category, an object Z is injective for an arrow f : X → Y if for every arrow g : X → Z,
there is some (not necessarily unique) ‘extension’ h : Y → Z such that h ◦ f = g.

We specialise this general notion for our purposes: For a subclass C of convergence spaces,
let’s say a convergence space Z is C-injective if it is injective for all pre-embeddings e : X → Y

between objects X and Y from C.

A topological space is TOP-injective if and only if it is a continuous lattice with the Scott
topology (this is a slight modification of the results in the Compendium [5, Section II-3]). In
contrast, we have the following result:

Theorem 7.12 Every cotopological lattice is TOP-injective: if X and Y are topological
spaces, e : X → Y is a pre-embedding, and L a complete lattice, then for every continuous
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function f : X → Lc, there is a continuous ‘extension’ g : Y → Lc such that g ◦e = f . It is
explicitly given by gy =

∨
V ∈N (y)

∧
f+(e−V ), and it is the greatest among the continuous

functions h satisfying h ◦ e ≤ f .

Proof: First, we show that g is continuous using Prop. 7.9 (2). Thus, we need to show∨
V ∈N (y)

∧
f+(e−V ) ≤

∨
V ∈N (y)

∧
g+V.

For any open neighbourhood V of y and any v in V ,
∧

f+(e−V ) ≤ gv holds by definition of
g, whence

∧
f+(e−V ) ≤

∧
g+V .

Second, we show g(ex) = fx for all x in X. Using the definition of g and expanding fx with
Prop. 7.9 (2), the equation becomes∨

V ∈N (ex)

∧
f+(e−V ) =

∨
U∈N (x)

∧
f+U.

For every open neighbourhood V of ex, U = e−V is an open neighbourhood of x by continuity
of e. Since e is a pre-embedding, each open neighbourhood U of x can be written as U = e−V

for some open V of Y , which obviously is a neighbourhood of ex. These arguments prove the
above equality.

Third, we show that h ◦ e ≤ f implies h ≤ g. Expanding hy with Prop. 7.9 (2) and using the
definition of g, the relation hy ≤ gy becomes∨

V ∈N (y)

∧
h+V ≤

∨
V ∈N (y)

∧
f+(e−V ).

To prove this, it suffices to show f+(e−V ) ⊆ ↑h+V for all open neighbourhoods V of y. This
inclusion holds since for all x in e−V , ex is in V , and thus fx ≥ h(ex) ∈ h+V . 2

This theorem generalises the fact that continuous lattices are TOP-injective. It shows that in
the larger category CONV, there are non-continuous lattices which are TOP-injective; indeed,
any complete lattice whatsoever can be made TOP-injective by imposing the cotopological
structure ‘↓c’ on it. For the moment, we are not able to show that cotopological lattices are
the only TOP-injective spaces.

The theorem breaks down without the condition that X and Y are topological. If pre-
embeddings between arbitrary convergence spaces are taken into account, then not even Ω
is injective; recall Example 3.1 of a convergence space Y with a subspace X that has more
opens than the ones coming from the subspace topology.

7.5 Topological Function Spaces

If D is a dcpo and Y a topological space, the continuous functions Dc → Y are topologically
characterised, and therefore coincide with the continuous functions Ds → Y (yet [Dc → Y ]
and [Ds → Y ] have different convergence structures in general).

Our goal in this section is to prove that the function space [Dc → Y ] is topological, and its
topology is the “point-open” topology, i.e., the topology with subbasic opens 〈x → V 〉 =
{f ∈ [Dc → Y ] | fx ∈ V } where x ranges over the elements of D and V over the opens
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of Y . Actually, we shall prove results that are more general than this, providing a full
characterisation of when [X → Y ] is topological. The statement about cotopological dcpos
will be derived at the end. We start out with some general remarks on function spaces.

Proposition 7.13 If X is empty, then [X → Y ] ∼= 1 is always topological. If X is not
empty, then [X → Y ] is topological only if Y is topological.

Proof: [∅ → Y ] has only one element, and all convergence spaces with one element are
isomorphic to the terminal topological space 1. If there is some x0 in X, then Y is a retract
of [X → Y ] by means of λy. λx. y : Y → [X → Y ] and λf. fx0 : [X → Y ]→ Y . Hence, Y is
a subspace of [X → Y ], and thus Y is topological if [X → Y ] is topological. 2

Because of the above proposition, we can concentrate on the case that Y is topological. We
shall see that the function space [X → Ω] plays a special role. Since continuous functions
from X to Sierpinski space Ω correspond to open sets of X, we introduce the alternative
notation ΩX for [X → Ω]. The points of ΩX can be considered as open sets or as continuous
functions to Ω. Set view and function view are linked by Ox = 1 ⇐⇒ x ∈ O.

Proposition 7.14 If Y is topological, then the function space structure of [X → Y ] is the
initial structure for the functions λf. f−V : [X → Y ] → ΩX where V ranges over some
subbasis of Y .

Proof: Let S be a subbasis of the topology of Y . The function e : Y →
∏

V ∈S Ω with
(ey)V = V y is a (topological) pre-embedding. Hence, eX : [X → Y ] → [X →

∏
V ∈S Ω] is a

pre-embedding as well (see Section 3.3). Now, [X →
∏

V ∈S Ω] ∼=
∏

V ∈S [X → Ω] ∼=
∏

V ∈S ΩX

holds. Hence, we obtain a pre-embedding E : [X → Y ] →
∏

V ∈S ΩX, and thus, [X → Y ]
carries the initial structure for the family (πV ◦ E)V ∈S . Now, let’s see what these functions
actually do:

πV (Ef)(x) = πV (eXf x) = πV (e(fx)) = V (fx) = (f−V )(x)

so πV ◦ E = λf. f−V as claimed. 2

Theorem 7.15 If Y and ΩX are topological, then [X → Y ] is topological. In this case,
a subbasis of the topology of [X → Y ] is given by the sets 〈U ← V 〉 = {f ∈ [X → Y ] |
f−V ∈ U}, where U ranges over a subbasis of ΩX, and V over a subbasis of Y .

Proof: The property to be topological is preserved by initial constructions. Hence, [X →
Y ] is topological by Prop. 7.14. A subbasis of this initial topology is given by the sets
(λf. f−V )− U , where V ranges over a subbasis of Y and U over a subbasis of ΩX. The
observation (λf. f−V )− U = 〈U ← V 〉 concludes the proof. 2

Since ΩX ∼= [X → Ω] is a special case of [X → Y ], we may conclude:

Corollary 7.16 For a convergence space X, the following are equivalent:

(1) ΩX is topological.

(2) For all topological spaces Y , [X → Y ] is topological.
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If X is restricted to be a topological space, then ΩX ∼= [X → Ω] is a cotopological lattice
by Theorem 7.11. By Theorem 7.3, a cotopological lattice is topological if and only if it is
a continuous lattice; in this case it will carry the Scott topology. This gives the following
corollary which was already known [15, Theorem 2.16].

Corollary 7.17 For a topological space X, the following are equivalent:

(1) ΩX is a continuous lattice.

(2) For all topological spaces Y , [X → Y ] is topological.

In this case, the topology of [X → Y ] is the Isbell topology : it has a subbasis consisting
of the sets 〈U ← V 〉 where U ranges over the Scott open sets of ΩX and V over the open
sets of Y .

If ΩX is a continuous lattice, every Scott open set of ΩX is a union of Scott open filters, which
correspond to the compact upper sets of the soberification of X. Thus, the Isbell topology in
Cor. 7.17 can be replaced by the compact-open topology if X is sober.

It is remarkable that the above results could be obtained without actually looking into the
convergence structure of ΩX ∼= [X → Ω]. This is done now since it is needed for the results
to follow.

Proposition 7.18 Let X be any convergence space. In ΩX, F ↓ U holds iff for all x ∈ U

and all A ↓X x, there is U ∈ F with
⋂
U ∈ A.1

Proof: By definition of the function space structure, F ↓ U holds iff A ↓ x implies
F · A ↓ Ux. This refers to the convergence structure of Ω, where all filters converge to
0. Thus, we may restrict to the case Ux = 1, i.e., x ∈ U , and note that F · A ↓ 1 iff
{1} ∈ F · A, iff there are U ∈ F and A ∈ A such that U · A ⊆ {1}. The latter means a ∈ O

for all a ∈ A and O ∈ U , or A ⊆ O for all O ∈ U , or A ⊆
⋂
U . Finally, the existence of A in

A with A ⊆
⋂
U is equivalent to

⋂
U ∈ A. 2

With this knowledge about the convergence structure of ΩX, we can derive a (clumsy)
criterion for ΩX to be topological.

Proposition 7.19 For a convergence space X and a set B of subsets of ΩX, the following
are equivalent:

(1) The space of open sets ΩX is topological with basis B.

(2) All elements of B are open in the induced topology of ΩX, and for all A ↓X x and
induced open neighbourhoods U of x, there is a set U ∈ B (a set of open sets) with
U ∈ U and

⋂
U ∈ A.

Proof: If ΩX is topological with basis B, then all elements of B are induced open since
the induced topology of ΩX is the original topology. Consider the situation A ↓X x ∈ U for
some open U . Since ΩX is topological, N (U) ↓ U holds. By Prop. 7.18, there is some V in
N (U) with

⋂
V ∈ A. Since B is a basis of the topology of ΩX, there is some U ∈ B with

U ∈ U ⊆ V. Then
⋂
U ⊇

⋂
V, and thus,

⋂
U is in A as well.

1F is a filter in ΩX, i.e., a set of sets of open sets, U is a set of open sets,
⋂
U a set, and A a set of sets.
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For the opposite direction, we need to show that the convergence structure ‘↓’ of ΩX satisfies
F ↓ U iff F ≤i N (U) where N (U) = [U ∈ B | U ∈ U ] is the neighbourhood filter of the
topology generated by B. First, F ↓ U implies F ≤i N (U) since the sets U ∈ B are open by
hypothesis. For the opposite implication, it suffices to show N (U) ↓ U . We use Prop. 7.18
for this purpose. So assume A ↓ x ∈ U . By hypothesis, there is U ∈ B with U ∈ U (whence
U ∈ N (U)) and

⋂
U ∈ A. 2

We are now interested in the special case where ΩX is topological with the point topology,
i.e., the topology with subbasis O(x) = {U ∈ ΩX | x ∈ U} where x ranges over the points of
X. A basis of the point topology is given by the sets O(F ) = {U ∈ ΩX | F ⊆ U} where F

ranges over the finite subsets of X.

Theorem 7.20 For a convergence space X, the following are equivalent:

(1) ΩX is topological with the point topology.

(2) For all topological spaces Y , [X → Y ] is topological with the point-open topology.

(3) X is locally finitary, i.e., for all A ↓X x and induced open neighbourhoods U of x,
there is a finite subset F ⊆ U with ↑F ∈ A.

Proof: For the implication (2)⇒ (1) choose Y = Ω and note that 〈x→ {1}〉 = O(x). The
implication (1)⇒ (2) is a special instance of Theorem 7.15; note that 〈O(x)← V 〉 = 〈x→ V 〉.
The equivalence (1) ⇔ (3) is Prop. 7.19; note that U ∈ O(F ) iff F ⊆ U , and

⋂
O(F ) = ↑F .

The extra condition in Prop. 7.19 that the basic sets O(F ) are open in the induced topology
of ΩX does not occur here since these sets are always induced open. For, O(F ) =

⋂
x∈F O(x),

and O(x) = (λO.Ox)−{1}, where λO.Ox : ΩX → Ω is continuous. 2

By Prop. 6.4, cotopological dcpos are locally finitary with a singleton set F . Therefore, we
have

Corollary 7.21 If D is a dcpo and Y a topological space, then [Dc → Y ] is again topo-
logical, and its topology is the point-open topology.

7.6 Summary

With respect to function spaces, we have shown the following properties:

(1) If X is a cotopological dcpo and Y a topological space, then [X → Y ] is a topological
space (with the point-open topology) (Cor. 7.21).

(2) If X is a topological space and Y a cotopological lattice, then [X → Y ] is again a
cotopological lattice (Theorem 7.11).

These properties are the reason for the name “cotopological”.

Statement (2) cannot be extended to cotopological pointed dcpos: Consider two continuous
pointed dcpos D and E. Continuous dcpos are both cotopological and topological, and so
[D → E] is topological by (1). If statement (2) were applicable, then [D → E] would be
cotopological as well, and hence continuous, but we know that the function space of continuous
pointed dcpos is not always continuous.
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If the two statements are applied to the case Y = Ω which is both topological and cotopolog-
ical, then we obtain:

(1) X cotopological ⇒ ΩX topological ⇒ Ω2X cotopological;

(2) X topological ⇒ ΩX cotopological ⇒ Ω2X topological.

Here, Ω2X is an abbreviation for Ω(ΩX) = [[X → Ω] → Ω]. The construction X 7→ ΩX

is the object part of a contravariant functor Ω with Ωf = f−, and so Ω2 is a (covariant)
functor in CONV. Statement (2) shows that this functor cuts down to an endofunctor of
TOP. It can be described in purely topological terms as follows: for a topological space X,
the points of Ω2X are Scott open sets of open sets, and the topology of Ω2X has subbasis
O(U) = {U ∈ Ω2X | U ∈ U} where U ranges over the opens of X.

Considering Ω2X as [ΩX → Ω], we may restrict to functions preserving finite joins and call
the result LX. The elements of LX are in one-to-one correspondence with the closed sets C

of X; this works for all convergence spaces X. Since subspaces of topological spaces are again
topological, we see that L restricts to an endofunctor in TOP. In this case, the topology of
LX has subbasis 3U = {C ∈ LX | C ∩ U 6= ∅}, i.e., we have obtained the familiar lower
power space construction.

We may also restrict the functions in [ΩX → Ω] to those which preserve finite meets and call
the result UX. Again, we see that U restricts to an endofunctor in TOP. The elements
of UX are then Scott open filters of open sets, which are in one-to-one correspondence
with compact upper sets K of X if X is sober. In this case, the topology of UX has
basis 2U = {K ∈ UX | K ⊆ U}, i.e., we have obtained the familiar upper power space
construction.

Let R be the continuous lattice [0,∞]. For any convergence space X, let V X be the subspace
of [ΩX → R] which consists of all strict and modular functions (ν∅ = 0 and ν(U ∩ V ) +
ν(U ∪ V ) = νU+νV ). Again, V cuts down to an endofunctor in TOP. In this case, continuity
of ν : ΩX → R means Scott continuity, and the topology of V X is the point-open topology,
i.e., we have exactly obtained the ad-hoc definition of the “space of valuations” in [6].
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