A Framework for Static Analysis of VHDL Code

Marc Schlickling Markus Pister

Compiler Design Lab AbsInt GmbH
Computer Science Dept. Science Park 1
Saarland University Saarbriicken

7th Int'l Workshop on Worst-Case Execution Time Analysis

C -I NBURG .
ompiler

Design / \ a

Lo TSI ®. .~ Dz Absint

UNIVERSITAT FREIBURG Angewandte Informatk GmbH

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Outline

Outline

© Motivation

© VHDL
@ VHDL semantics
@ Transformed semantics

© Analysis framework
@ Simulation routine

@ Clock routine

@ Conclusion

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Motivation

@ Computation of WCET is a key issue in validation of safety
critical applications
e ail
e Based on abstract interpretation
e WCET estimation mainly based on pipeline analysis modelling
the processor pipeline and system controllers
e Today: Pipeline models are hand-crafted
= time consuming and error-prone process
@ Modern processors are derived from formal hardware
descriptions

@ Why not derive the pipeline analysis from the hardware
description of a processor?

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Motivation

Problems
@ [Availability /Accessibility of hardware specification]
@ Processor specification too large to be used in aiT
@ Specification needs to be abstracted

Idea

@ Use of static methods to derive an abstracted model that is
suitable for use in aiT

@ Use of PAG as powerful generator for static analyzers
In this talk

@ Framework for static analysis of VHDL code

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Motivation

Structure
@ VHDL model is transformed
into CRL2 description —
Analysis "
e semantically equivalent /””/ /VHD /
e some syntactical modifications
(e.g. switch statements are

transformed into _
Static Analysis
if-then-else statements) i =/

@ Analyzer based on PAG
roiyis
results

specification

o PAG generates code working on
CRL2 description

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Motivation

CRL2

@ Provides a textual description of a control flow graph
@ Hierarchically organized in

e Routines,

e Basic blocks,

o Instructions and
o Edges

o Extendible using an attribute-value concept

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

VHDL semantics

Transformed semantics

entity counter is
port(clk:in std_logic; rst:in std_logic;

° Hardware descrlptlon |anguage val:out std_logic_vector(2 downto 0));
. . . end;
o Hlerarchlca“y Organlzed architecture rtl of counter is
signal cnt:std_logic_vector(Q downto 0);
@ Defined in the IEEE standard ~ ®egi» ‘
P1: process(clk,rst) is
1076 if (rst=’1’) then
cnt<="000";
elsif (rising_edge(clk)) then
° FOCUS on cnt<=cnt+’17;
o register-transfer-level (RTL) end if;
i end;
o synthesizable IEEE P2: process(cnt) is
val<=cnt;
substandard 1076.6 end;

end;

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

VHDL semantics

Transformed semantics

VHDL semantics
@ Two-level semantics

e Process execution
e Synchronization + Restart + Time

Process execution

@ Sequential, imperative semantics

@ Assignments to signals are delayed

@ Executes, until suspended (by wait statement)
Second level

o After all processes have suspended
@ Check if restart of processes is necessary

o Yes: restart these processes (delta cycle)
o No: wait for timeout (theta cycle)

@ Repeat

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

VHDL semantics

Transformed semantics

Transformed semantics
@ Ordering of process execution is not important
e Variables are local
e Signal assignments take effect only at synchronization point
Transform two-level semantics to one level

@ Always execute all processes in fixed ordered loop

@ Signal assignments can be viewed as assignments to new
variables (copied at synchronization point)
e assignment: s<=’1’; = Spo, :="1";
@ at sync: S:=Spey ;
@ Add a guard to process header to check, if reexecution in the
next loop iteration is necessary

o Guard true, iff process is restarted at synchronization of
previous iteration

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

VHDL semantics

Transformed semantics

Reducing two-level semantics to one level transforms the
data-dependencies between processes into control-dependencies

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Simulation routine
Clock routine

Analysis framework

Analysis framework

Simulation routine

@ Sequential execution of processes
modelled by simul routine

e "Process execution” is guarded
by the simul_if modelling the
sensitivity list of the process

o Analyzer decides, whether the
edge to the call has to be taken
or not

@ Synchronization point is
represented by simul_wait

@ environment routine allows analysis
of open designs

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Simulation routine

Analysis framework (Cllelk rentiie

ralysis_sta

call clock|

Analyzing synchronous designs

@ Clock events has to be modelled
separately

@ Introduced special clock routine
signalizing rising or falling events
via special attributes

clock_rising_edge

b53.

@ Suppress uninteresting events, e.g.

Leon 2 SPARC V8 implementation
completely triggered on rising clock
edges

rec call clock

@ Support for multiple clock domains

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Conclusion

Conclusion

@ Framework eases the task of writing analyzers for VHDL
o Flexible and easy to extend due to the use of PAG

@ Allows analysis of open and closed designs
e environment routine allows handling of open signals

@ Support for multiple clock domains

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Conclusion

Questions are guaranteed in life;
Answers aren't!

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Conclusion

Abstractions in VHDL
@ Dead-Code Elimination
e Slice all parts being unreachable under a specified assumption
away (e.g. reset-signal is always 'I’, value of a signal is within
a specific range)
o Decreases the size of the model
@ Process Substitution
o Replace a process with an abstract process
e Semantic of the abstract process specified in an arbitrary
language (e.g. C)
e Changing of domains necessary
e Transforming datatypes (e.g. addresses to address intervals)
© Memory Abstraction
e Remove the memory from the VHDL model
o Introduce new interface
@ Necessary to insert instructions into the model
o Can be done by inserting abstract processes
o Increases the size of the model

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Conclusion

Generating a Timing Analysis
@ Abstract the memory
o Introduce interface to insert instruction into the model

@ Find constraint: "When does an instruction leave the
pipeline?”
o Identify point in the model, where instructions complete
e After passing this point, the completed instruction does not
have any effect on signals, etc.

@ Compute a backward slice for this constraint

o All parts being not part of this slice have no effect on the
timing

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

Conclusion

Generating a Timing Analysis (cont.)
@ lterate until model is handable

e Generate code for the model
o Simulate the resulting model (using aiT)

@ Check for state explosions and
o Check state differences

o Substitute a process with an abstract one
@ e.g. cache abstraction

o Eliminate dead code

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code

	Outline
	Motivation
	VHDL
	VHDL semantics
	Transformed semantics

	Analysis framework
	Simulation routine
	Clock routine

	Conclusion

