
Outline
Motivation

VHDL
Analysis framework

Conclusion

A Framework for Static Analysis of VHDL Code

Marc Schlickling Markus Pister

Compiler Design Lab AbsInt GmbH
Computer Science Dept. Science Park 1

Saarland University Saarbrücken

7th Int’l Workshop on Worst-Case Execution Time Analysis

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Outline

1 Motivation

2 VHDL
VHDL semantics
Transformed semantics

3 Analysis framework
Simulation routine
Clock routine

4 Conclusion

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Computation of WCET is a key issue in validation of safety
critical applications

aiT

Based on abstract interpretation
WCET estimation mainly based on pipeline analysis modelling
the processor pipeline and system controllers
Today: Pipeline models are hand-crafted
=⇒ time consuming and error-prone process

Modern processors are derived from formal hardware
descriptions

Why not derive the pipeline analysis from the hardware
description of a processor?

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Problems

[Availability/Accessibility of hardware specification]

Processor specification too large to be used in aiT

Specification needs to be abstracted

Idea

Use of static methods to derive an abstracted model that is
suitable for use in aiT

Use of PAG as powerful generator for static analyzers

In this talk

Framework for static analysis of VHDL code

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Structure

VHDL model is transformed
into Crl2 description

semantically equivalent
some syntactical modifications
(e.g. switch statements are
transformed into
if-then-else statements)

Analyzer based on PAG
specification

PAG generates code working on
Crl2 description

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Crl2

Provides a textual description of a control flow graph

Hierarchically organized in

Routines,
Basic blocks,
Instructions and
Edges

Extendible using an attribute-value concept

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

VHDL semantics
Transformed semantics

VHDL

Hardware description language

Hierarchically organized

Defined in the IEEE standard
1076

Focus on

register-transfer-level (RTL)
synthesizable IEEE
substandard 1076.6

entity counter is

port(clk:in std_logic; rst:in std_logic;

val:out std_logic_vector(2 downto 0));

end;

architecture rtl of counter is

signal cnt:std_logic_vector(2 downto 0);

begin

P1: process(clk,rst) is

if (rst=’1’) then

cnt<="000";

elsif (rising_edge(clk)) then

cnt<=cnt+’1’;

end if;

end;

P2: process(cnt) is

val<=cnt;

end;

end;

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

VHDL semantics
Transformed semantics

VHDL semantics

Two-level semantics

Process execution
Synchronization + Restart + Time

Process execution

Sequential, imperative semantics

Assignments to signals are delayed

Executes, until suspended (by wait statement)

Second level

After all processes have suspended

Check if restart of processes is necessary

Yes: restart these processes (delta cycle)
No: wait for timeout (theta cycle)

Repeat

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

VHDL semantics
Transformed semantics

Transformed semantics

Ordering of process execution is not important

Variables are local
Signal assignments take effect only at synchronization point

Transform two-level semantics to one level

Always execute all processes in fixed ordered loop

Signal assignments can be viewed as assignments to new
variables (copied at synchronization point)

assignment: s<=’1’; =⇒ snew:=’1’;
at sync: s:=snew;

Add a guard to process header to check, if reexecution in the
next loop iteration is necessary

Guard true, iff process is restarted at synchronization of
previous iteration

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

VHDL semantics
Transformed semantics

Result

Reducing two-level semantics to one level transforms the
data-dependencies between processes into control-dependencies

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Simulation routine
Clock routine

Analysis framework

Simulation routine

Sequential execution of processes
modelled by simul routine

”Process execution” is guarded
by the simul if modelling the
sensitivity list of the process
Analyzer decides, whether the
edge to the call has to be taken
or not

Synchronization point is
represented by simul wait

environment routine allows analysis
of open designs

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Simulation routine
Clock routine

Analyzing synchronous designs

Clock events has to be modelled
separately

Introduced special clock routine
signalizing rising or falling events
via special attributes

Suppress uninteresting events, e.g.
Leon 2 SPARC V8 implementation
completely triggered on rising clock
edges

Support for multiple clock domains

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Conclusion

Framework eases the task of writing analyzers for VHDL

Flexible and easy to extend due to the use of PAG

Allows analysis of open and closed designs

environment routine allows handling of open signals

Support for multiple clock domains

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Questions are guaranteed in life;

Answers aren’t!

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Abstractions in VHDL
1 Dead-Code Elimination

Slice all parts being unreachable under a specified assumption
away (e.g. reset-signal is always ’1’, value of a signal is within
a specific range)
Decreases the size of the model

2 Process Substitution
Replace a process with an abstract process

Semantic of the abstract process specified in an arbitrary
language (e.g. C)

Changing of domains necessary
Transforming datatypes (e.g. addresses to address intervals)

3 Memory Abstraction
Remove the memory from the VHDL model
Introduce new interface

Necessary to insert instructions into the model
Can be done by inserting abstract processes

Increases the size of the model
Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Generating a Timing Analysis

Abstract the memory

Introduce interface to insert instruction into the model

Find constraint: ”When does an instruction leave the
pipeline?”

Identify point in the model, where instructions complete
After passing this point, the completed instruction does not
have any effect on signals, etc.

Compute a backward slice for this constraint

All parts being not part of this slice have no effect on the
timing

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code



Outline
Motivation

VHDL
Analysis framework

Conclusion

Generating a Timing Analysis (cont.)

Iterate until model is handable

Generate code for the model
Simulate the resulting model (using aiT)

Check for state explosions and

Check state differences

Substitute a process with an abstract one

e.g. cache abstraction

Eliminate dead code

Marc Schlickling, Markus Pister A Framework for Static Analysis of VHDL Code


	Outline
	Motivation
	VHDL
	VHDL semantics
	Transformed semantics

	Analysis framework
	Simulation routine
	Clock routine

	Conclusion

